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Abstract

This study uses IKONOS imagery to quantify the combined spatial and spectral characteristics of urban reflectance in 14 urban areas

worldwide. IKONOS 1-m panchromatic imagery provides a detailed measure of spatial variations in albedo while IKONOS 4-m

multispectral imagery allows the relative contributions of different materials to the spectrally heterogeneous radiance field to be determined

and their abundance to be mapped. Spatial autocorrelation analyses indicate that the characteristic scale of urban reflectance is consistently

between 10 and 20 m for the cities in this study. Spectral mixture analysis quantifies the relative contributions of the dominant spectral

endmembers to the overall reflectance of the urban mosaic. Spectral mixing spaces defined by the two low-order principal components

account for 96% to 99% of image variance and have a consistent triangular structure spanned by high albedo, low albedo and vegetation

endmembers. Spectral mixing among these endmembers is predominantly linear although some nonlinear mixing is observed along the gray

axis spanning the high and low albedo endmembers. Inversion of a constrained three-component linear mixing model produces stable,

consistent estimates of endmember abundance. RMS errors based on the misfit between observed radiance vectors and modeled radiance

vectors (derived from fraction estimates and image endmembers) are generally less than 3% of the mean of the observed radiance. Agreement

between observed radiance and fraction estimates does not guarantee the accuracy of the areal fraction estimates, but it does indicate that the

three-component linear model provides a consistent and widely applicable physical characterization of urban reflectance. Field validated

fraction estimates have applications in urban vegetation monitoring and pervious surface mapping.

D 2003 Published by Elsevier Inc.
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1. Introduction sensors. The reflectance properties of the urban mosaic are
Human settlements occupy a relatively small fraction of

Earth’s surface area, but their extent, distribution and evolu-

tion have enormous impact on environmental and socioeco-

nomic dynamics worldwide. Despite their fundamental

importance, urban areas have not been mapped and charac-

terized with remote sensing to the same extent that other land

cover types have. Optical sensors on operational satellites

provide an efficient means for quantifying past and present

distributions of human settlements as well as their physical

reflectance properties. This is important at two scales. At a

global scale, it is important to understand the physical

characteristics that distinguish developed urban areas from

other types of human modified and undeveloped land surfa-

ces in order to map and monitor the extent and evolution of

urban areas with moderate resolution (20–30 m) optical
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central to both the discrimination of urban land cover and the

understanding of its role in the urban environment. At the

intraurban scale, it is important to constrain the effect that

urban land cover and building materials have on the imme-

diate physical environment. Optical reflectance character-

istics have a direct impact on urban microclimate because

they modulate the solar energy flux through the built

environment. The spatial scale of the reflectance determines

the spatial scale of surface temperature variations which, in

turn, have a strong influence on heat flux, convection and

urban microclimate. Numerical simulation of atmospheric

circulation has now advanced to the point where the effects

of the built environment on microclimate and air quality can

be modeled—given adequate constraints on physical prop-

erties like albedo and fractional vegetation. Detailed charac-

terization of urban land cover also has application to

pervious surface mapping and urban vegetation monitoring.

Previous urban remote sensing studies have generally

focused on identification of specific materials or land cover
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classes. Ridd (1995) proposed an urban landcover classifi-

cation scheme based on the distribution of vegetation,

impervious surface and soil (the VIS model) but acknowl-

edged the difficulty of distinguishing between soil and

impervious surfaces with optical sensors. Subsequent stud-

ies (e.g., Flanagan & Civco, 2001; Liu & Lathrop, 2002;

Madhavan et al., 2001) have employed a variety of classi-

fication methods (Maximum Likelihood, Unsupervised,

Decision Tree) with moderate resolution (30 m) imagery,

but traditional hard classification algorithms are impeded by

the abundance of spectrally mixed pixels. Mixed pixels are

problematic for statistical classification methods because

most algorithms are based on the assumption of spectral

homogeneity at pixel scale within a particular class of land

cover. The classification task is often further complicated by

inconsistencies between the thematic classes sought and the

reflectance properties that can be discriminated with mod-

erate resolution broadband sensors. Urban areas provide

examples of spectrally diverse, scale-dependent thematic

classes containing large numbers of pixels that are spectrally

indistinguishable from other land cover classes. The diver-

sity of land cover types and scales in the urban mosaic

therefore results in relatively high rates of misclassification

between urban and other land cover classes. Combining

spectral, textural and ancillary information can improve

classification accuracy (e.g., Stefanov et al., 2001), but a

physical characterization of reflectance is still necessary to

accommodate the physical processes that influence the

upwelling radiance measured by optical sensors. Several

recent studies have used physical rather than statistical

classifications of urban land cover in individual cities with

some degree of success (e.g., Kressler & Steinnocher, 1996,

2000; Phinn et al., 2002; Rashed, Weeks, Stow, & Fugate,

2002; Small, 2001a; Wu and Murray, 2002). High-resolu-

tion aerial photographs reduce the abundance of mixed

pixels (e.g., Akbari, Rose, & Taha, 1999), but film-based

images are less amenable to multispectral image analysis

and classification. Hyperspectral imagery can provide suf-

ficient spatial and spectral resolution to map a wide variety

of urban surfaces (e.g., Herold, Gardner, Hadley, & Roberts,

2002), but relatively few cities have yet been mapped with

imaging spectrometers.

Characterization of urban reflectance is constrained by

the spatial resolution of the sensor. The 30-m resolution of

the Landsat ETM+ sensor and the 20-m resolution of the

Spot HRV sensor are generally not sufficient to discriminate

individual features (e.g., buildings, streets, trees) within the

urban mosaic. As a result, almost all the urban pixels

imaged by these sensors represent a composite radiance

field emanating from several distinct features with different

reflectances within the sensor’s field of view. This spectral

heterogeneity at scales comparable to the ground instanta-

neous field of view (GIFOV) of the sensor results in a

preponderance of spectrally mixed pixels. Mixed pixels

violate the cardinal assumption of statistical clustering

algorithms commonly used to classify land cover types.
The increased spatial resolution of IKONOS imagery pro-

vides an opportunity to image urban areas at scales suffi-

cient to resolve many (but not all) of the individual features

in the urban mosaic. IKONOS’ orbital platform also makes

it possible to image a wide variety of urban areas worldwide

for a self-consistent analysis and comparison of the reflec-

tance properties of urban land cover. A consistent, physi-

cally based description of urban reflectance properties could

help to advance our understanding and simulation of urban

microclimate by providing spatially explicit constraints on

albedo, evapotranspiration and spatial distribution of pervi-

ous surface. Characterization of urban reflectance at 4 m

scale would also provide constraints on the spectral end-

members and mixing processes responsible for the mixed

pixels imaged by moderate resolution sensors. If the scale-

dependent reflectance properties of urban mixed pixels

could be distinguished from the reflectance properties of

other types of land cover it would provide a basis for

mapping urban areas in moderate resolution imagery col-

lected over the past 30 years.

The objective of this study is to explore a physical

characterization of urban reflectance properties in a variety

of urban settings. The characterization will incorporate the

spatial scale and optical reflectance properties of the variety

of land covers contained in the urban mosaics. Spatial

autocorrelation is used to quantify the characteristic scale

lengths of urban reflectance within and among different

cities. Spectral mixture analysis is used to quantify and

compare the reflectance properties of these urban areas.

Spectral mixture analysis provides a physically based rep-

resentation of composite radiance measurements that allows

surface reflectance to be described as combinations of

spectral endmembers. Representing reflectance as continu-

ous gradations within a spectral mixing space provides a

more flexible, and accurate, description than that resulting

from classification algorithms that assign each pixel mem-

bership in one (and only one) of a small number of classes.

It is important to distinguish between identification of

specific target materials and the physical representation of

the radiance image discussed here. Because many different

materials can have indistinguishable reflectance signatures

as measured by IKONOS, it is not generally possible to

identify specific target materials in these unvalidated spec-

tral mixture analyses. The objective here is to determine the

consistency of urban reflectances and to assess the feasibil-

ity of using spectral mixture analysis to provide a general

and widely applicable representation of these reflectances.

The key questions addressed by this study are related to the

consistency of urban reflectance properties both within and

among a variety of urban areas worldwide. This study uses a

collection of 14 IKONOS images provided by the NASA

Scientific Data Purchase Program. The acquisition parame-

ters for the NASA-funded IKONOS acquisitions are de-

scribed in greater detail elsewhere in this volume.

Throughout the analysis it is assumed that the spatial

variations in radiance measured by IKONOS are primarily
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a result of spatial variations in surface reflectance and that

spatial variations in atmospheric turbidity are not significant

at the scale of hundreds of meters or less. Hence radiance

will be used when referring to the IKONOS measurements

and reflectance will be used when referring to the surfaces

from which the radiance emanates.
2. Scales of urban reflectance

The spatial scale of urban reflectance influences physical

processes like surface heating and convection as well as the

spectral mixing that produces the mixed pixels observed in

moderate resolution imagery. It is important to quantify this

scale to better understand both of these processes. The

degree to which different cities (and areas within cities)

exhibit different scales of spatial variability determines the

feasibility of a general characterization of urban reflectance.

Urban mosaics are composed of a wide variety of features

with distinct sizes and reflectance properties, but the size
Fig. 1. Characteristic scale length of urban reflectance. IKONOS panchromatic i

(VNIR) radiance resulting from the mosaic of roofs, streets, and open spaces. Th

(2D) spatial autocorrelation function (ACF) of a 100� 100-m subscene shows

dominant scale of building size and street layout. (C) Asymptotic behavior of ortho

shows the consistency of the slope of the central peak. The scale lengths estimated

consistent with the size of most features in (A). Includes materials n Space Imag
distribution is generally dominated by features at the scale

of streets and buildings. The reflectance of an individual

feature will generally have some degree of internal variabil-

ity that is small compared to the reflectance contrast with

other features at a scale of 1 to 4 m. This is why individual

features like streets and buildings can be usually discrimi-

nated in IKONOS imagery. The spatial scale of reflectance

variability is therefore determined by the size distribution of

individual features in the urban mosaic. In the context of this

study, the characteristic scale length refers to the linear

dimension of the features of greatest areal abundance. For

a typical urban mosaic it is more informative to refer to a

range of lengths encompassing the most areally abundant

features.

Spatial autocorrelation of IKONOS panchromatic imag-

ery can provide a quantitative measure of the characteristic

spatial scales of urban reflectance. The properties of the

autocorrelation function as applied to remotely sensed

images are described in detail by Getis (1994) and Wulder

and Boots (1998). At small lag distances the internal
magery of Caraz Peru (A) shows spatial variations in visible/near infrared

e superimposed grid spacing is 10 m. (B) The normalized two-dimensional

the azimuth dependence and quasi-periodic structure resulting from the

gonal one-dimensional autocorrelation functions extracted from the 2D ACF

from the 0.1-slope threshold of these two functions are 10 and 12 m and are

ing.



Fig. 2. Distribution of scale lengths for a variety of urban areas. Each of the 6357 sites corresponds to a 100� 100-m subscene of IKONOS panchromatic

imagery. The distribution of scale lengths for the 14 cities indicates that characteristic scales are consistently between 10 and 20 m. Inset histograms show

distributions for different cities.
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consistency in the reflectance of individual features results

in high correlations, but as the lag distance approaches the

characteristic spatial scale of the mosaic the reflectance

contrast between adjacent features causes the autocorrela-

tion to decrease. The width of the central peak of the

autocorrelation therefore provides an indication of the

spatial scale of the individual features that contribute sig-

nificant variance to the observed radiance field. Secondary

peaks in the function indicate repetitive patterns in the

reflectance at scales and azimuths where bright and dark

features are aligned in phase. In this study, two-dimensional

(2D) autocorrelation functions (ACFs) are used to estimate

the characteristic spatial scale of urban reflectance and to

assess the consistency of these scales within and among a

variety of urban areas worldwide. For each city, 2D ACFs

are calculated for a number of 100� 100-m subscenes of

IKONOS panchromatic imagery, and characteristic scale
Fig. 3. False color composites of IKONOS MSI imagery (left) and corresponding p

visible bands (R/G/B = 3/2/1) do not discriminate between vegetation and low

incorporating the NIR band 4. False color composites of the three low-order princi

thereby enhancing contrast between surfaces with subtle differences in reflectan

appearing red in all but one image (blue in She Xian). The second principal comp

third principal component is orthogonal to the primary mixing plane so pixels with

mixing outside the primary mixing plane span the range from black to blue. Eac
length estimates are derived from each ACF. The scale

length is estimated as the lag distance at which the radial

average of the 2D ACF attained a radial slope of 0.1 times

the maximum slope of the central peak. The choice of 0.1 is

rather ad hoc but the slope of the ACF diminishes asymp-

totically with distance between the central peak and the first

trough so the scale length estimates are not very sensitive to

the precise value used for the slope threshold below ~0.1.

The slope threshold returned estimates that were consistent

with random measurements of feature size from several

images. In most of the cities investigated here the 2D ACF

indicated the direction and scale of the dominant street grid

pattern as radial ridges of higher correlation, but the central

peaks are consistently axisymmetric (Fig. 1).

A wide variety of urban areas have similar distributions

of scale lengths. Fig. 2 shows scale length distributions for

some of the cities investigated and the total distribution of
rincipal components (right) for 14 urban areas. Natural color composites of

albedo surfaces as effectively as false color composites (R/G/B= 3/4/1)

pal components (R/G/B= PC1/PC2/PC3) minimize visible band correlations

ce. The first principal component corresponds to albedo with bright areas

onent corresponds to high NIR reflectance so vegetation appears green. The

relatively low proportions of PC1 and PC2 and more pronounced nonlinear

h image is 1 km2. Includes materials n Space Imaging.
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all 14 cities. The total number of 100� 100-m estimates

calculated for each city was determined by the size of the

IKONOS image and the total built-up area within each

image. All of the large cities had similar skewed distribu-

tions like those in Fig. 2. Some of the smaller cities did not

provide a large enough number of subscenes to attain a

strongly skewed distribution. All the cities investigated,

except Alta Mira and She Xian, had similar distributions

with modal scale lengths between 10 and 20 m. These

smaller cities had smaller scale lengths. These scale length

distributions explain why moderate resolution sensors with

GIFOVs greater than 10 m rarely resolve individual features

in urban areas. This also suggests that a significant percent-

age of the 4-m IKONOS MSI pixels should image spectrally

homogeneous features within urban mosaics with scale

lengths greater than 10 m. Urban areas with scale lengths

of 10 to 20 m will still have a significant percentage of

mixed pixels because the 4-m GIFOV is similar enough to

the scale length to result in a significant number of boundary

pixels spanning two or more features. The larger the

characteristic scale length of features in the urban mosaic,

the higher the percentage of spectrally homogeneous pixels

and the lower the percentage of mixed pixels. The panchro-

matic autocorrelation provides a conservative estimate of

spectral heterogeneity because spectrally distinct features

can have similar VNIR albedos as imaged by IKONOS’

panchromatic band.
3. Spectral mixing

Spectral mixture analysis (SMA) provides a systematic

way to quantify spectrally heterogeneous urban reflectance.

SMA is based on the observation that, in many situations,

radiances from surfaces with different ‘‘endmember’’ reflec-

tances mix linearly within the IFOV (Nash & Conel, 1974;

Singer, 1981; Johnson, Smith, Taylor-George, & Adams,

1983; Singer & McCord, 1979). This observation has made

possible the development of a systematic methodology for

SMA (Adams et al., 1986, 1989, 1993; Gillespie et al.,

1990; Smith, Ustin, Adams, & Gillespie, 1990; Roberts,

Smith, & Adams, 1993) that has proven successful for a

variety of quantitative applications with multispectral imag-

ery (e.g., Adams et al., 1995; Elmore, Mustard, Manning, &

Lobell, 2000; Pech, Davies, Lamacraft, & Graetz, 1986;

Roberts, Batista, Pereira, Waller, & Nelson, 1998; Smith et

al., 1990). If a limited number of distinct spectral endmem-
Fig. 4. Mixing space representation of IKONOS MSI imagery. Normalized ei

components. The two-dimensional scatterplots of the principal components are pr

mixing space. The side view shows the two dimensions associated with the majori

dimension. Variance in the third dimension is primarily associated with nonlinear m

and generally accounts for less than 3% of the total variance. The fourth dimens

coherent spectral information. Orthogonal projections of spectral mixing spaces in

mixing space spanned by high albedo (H), low albedo (L) and vegetation (V) en

while convex edges indicate nonlinear mixing. Tapering of the mixing space appr

model is very well constrained for vegetation fractions. The apex seen in the thir
bers are known, it is possible to define a ‘‘mixing space’’

within which mixed pixels can be described as linear

mixtures of the endmembers. Given sufficient spectral

resolution, a system of linear mixing equations may be

defined and the best fitting combination of endmember

fractions can be estimated for the observed reflectance

spectra. The strength of the SMA approach lies in the fact

that it explicitly takes into account the physical processes

responsible for the observed radiances and therefore accom-

modates the existence of mixed pixels.

The diversity of land covers in the urban mosaic influ-

ences the topology of the mixing space while the spectral

dimensionality of the image is constrained by the number of

bands and their spectral resolution. The limited spatial and

spectral resolution of the IKONOS sensor results in a

projection of a high-dimensional mixing space onto a

lower-dimensional representation that is constrained by the

ability of the sensor to discriminate different surface reflec-

tances at GIFOV scales. Analyses of AVIRIS hyperspectral

imagery suggest that some urban areas have as many as 30

to 50 spectral dimensions (Green & Boardman, 2000; Small,

2001c), but the IKONOS sensor can resolve only four of

these dimensions at most. A central question of this analysis

is whether these four dimensions provide an adequate basis

for a systematic characterization of urban reflectance. Is the

information content provided by the IKONOS sensor suffi-

cient to characterize the differences in scale and reflectance

between urban areas and other land cover types in a

consistent manner?

In this study, the mixing space characterization is provided

by a principal component transformation of the multispectral

imagery. The principal component rotation minimizes the

correlations among bands and enhances the contrast between

different surface reflectances. The accompanying eigenvalue

distribution provides a quantitative estimate of the variance

partition between the signal- and noise-dominated principal

components of the image. With hyperspectral sensors this

partition and the number of signal-dominated components

can form the basis of a dimensionality estimate of the image

(Green & Boardman, 2000). With broadband sensors like

IKONOS, the four-band limit to the number of distinguish-

able dimensions is generally less than the number of spec-

trally distinct endmembers (and hence the inherent

dimensionality). The multidimensional feature space of the

low-order principal components represents the spectral mix-

ing space that can be used to define spectral mixtures as

combinations of spectral endmembers (Boardman, 1993;
genvalues (left column) give the variance partition among the principal

ojections of the three low-order dimensions of a four-dimensional spectral

ty (>96%) of the variance while the top and end views incorporate the third

ixing along the ‘‘gray axis’’ between the high and low albedo endmembers

ion (not shown) contributes less than 1% of the variance but still contains

a variety of urban areas show a similar structure with a narrow triangular

dmembers. Straight edges correspond to linear mixing among endmembers

oaching the Vegetation endmember suggests that a three-component mixing

d dimension generally corresponds to a soil (S) endmember.
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Jackson, 1983; Johnson, Smith, &Adams, 1985). Themixing

space could be represented with scatter plots of the unrotated

bands but using scatter plots of the principal components

(PCs) provides an ‘‘optimal’’ projection of the mixing space

because the PC rotation orders the projections with respect to

the variance they contribute to the scene.

In this analysis, a minimum noise fraction (MNF)

principal component transformation is used to project the

mixing space onto a series of 2D scatter plots. These scatter

plots are referred to geometrically with the ‘‘side view’’

corresponding to the projection of the two lowest order PCs

containing the largest amount of image variance. The ‘‘end

view’’ and ‘‘top view’’ incorporate the third dimension of

the mixing space and help to represent the cloud of pixels

occupying the three low-order dimensions of the mixing

space as a 3D object. The MNF transformation imple-

mented in ENVI is analogous to the maximum noise

transformation described by Green, Berman, Switzer, and

Craig (1988) but differs in the ordering of the principal

components from high to low signal variance (RSI, 2000).

With IKONOS imagery, the MNF transformation usually

produces principal components similar to those resulting

from a traditional covariance-based PC rotation but offers

the added benefit of normalizing the eigenvalues relative to

the variance of the sensor noise estimate. For this analysis,

all MNF transformations were applied using noise covari-

ance statistics derived from a July 2001 acquisition over the

Central Park Reservoir in New York City under relatively

clear atmospheric conditions. The Reservoir is an enclosed,

noncirculating body of water ~600 m in diameter with

negligible reflectance from suspended sediment or biolog-

ical productivity and therefore provides a reasonable ap-

proximation of a ‘‘dark target’’. Normalized eigenvalue

distributions quantify the partition of variance among the

principal components indicating how many spectral dimen-

sions are required to represent the information content in

the image. The larger eigenvalues are associated with the

low-order principal components representing the dominant

reflectance patterns while the smaller eigenvalues are

associated with the higher-order principal components

associated with the pixel scale variance commonly assumed

to be noise. The signal-to-noise ratio of the IKONOS

sensor is sufficiently high that all of the principal compo-

nents in all scenes investigated showed significant infor-

mation content well above the noise level. The eigenvalue

distributions of IKONOS imagery therefore do not indicate

the dimensionality of the image but rather the variance

partition among the dimensions.
Fig. 5. Mixing spaces for nonurban land cover. At 1 km2 scales, other types of land

urban land cover. While these mixing spaces do show cases of linear mixing amo

edges of the mixing spaces. Multiple scattering within the open canopy vegetatio

space representing the sparsely vegetated Peruvian highland has a well-defined low

increases along dimension 1. The densely vegetated mountains in central China p

exposed soil endmember resides at the bottom of the secondary dimension. The s

resembles the triangular mixing space seen in urban areas. Its primary mixing spac

high albedo apex.
Subscenes of the 14 images used in this analysis are

shown in Fig. 3. The full-size images vary in area, cloud

cover and location, so 1-km2 subscenes are used for most of

the comparative analyses. These subscenes were chosen to

represent the spectral diversity typically observed within the

built-up core of each city. The results are generally consis-

tent with those of the larger subscenes but are more easily

compared because of their uniform size. The false color

composites incorporating the NIR band (R/G/B = 3/4/1)

emphasize the distinction between vegetation and low

albedo surfaces. False color composites of the three low-

order principal components maximize the spectral contrast

between objects of different reflectance, but they also reveal

a consistency in the reflectance of the urban areas used in

this study. In each case, the low-order principal component

(PC1) corresponds to the overall albedo of the image.

Hence, bright features usually appear red in Fig. 3. The

second principal component distinguishes vegetation from

nonvegetated surfaces resulting in a correspondence of the

green areas in the composites in Fig. 3. The third principal

component accounts for only a few percent of the total

image variance so areas that appear blue are characterized

by lower albedo unvegetated areas with other types of

reflectance such as dark soils.

Spectral mixing spaces provide a self-consistent basis for

comparison of urban reflectance characteristics (Small,

2002a). IKONOS MSI imagery shows a simple, but consis-

tent, spectral mixing space structure for the urban areas

investigated in this study. The similarity of the triangular

mixing spaces shown in Fig. 4, as well as those not shown,

indicates that all 14 of the urban areas in this study have a

consistent mixing space topology in the form of a narrow

triangular cloud of pixels. The distribution is referred to as

narrow because the variance of the two primary dimensions is

considerably greater than the other dimensions. Each princi-

pal component is scaled by its full range of values so the

relative widths of the mixing space are exaggerated. The

actual variance is indicated by the corresponding eigenvalue

so the third and fourth dimensions are much ‘‘thinner’’ than

the first two dimensions. In each case, the three endmembers

defining the apexes of the triangular mixing space correspond

to high albedo (H), low albedo (L) and vegetation (V)

reflectances. Although the internal distributions of mixed

pixels within the mixing spaces vary, the overall form is

consistent. The apexes of the primary 2D mixing space

corresponding to the spectral endmembers are generally well

defined and the edges between the apexes are generally

straight or concave. This indicates that the mixing among
cover do not generally produce the triangular mixing space characteristic of

ng well-defined endmembers, nonlinear mixing is evident from the convex

n of the Argentinian pampa produces strong nonlinear mixing. The mixing

albedo endmember, but mixing becomes increasingly nonlinear as albedo

roduce a mixing space dominated by illumination differences in which an

pectrally diverse riparian land cover of the Brazillian Amazon most closely

e is dominated by two linear mixing continua and complex topology at the
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these three endmembers is primarily linear, while nonlinear

mixing is indicated by the convex edges seen in the third

dimension. The lower variance of the third dimension indi-

cates that the magnitude of the nonlinear mixing is small

compared to the linear mixing represented in the two primary

dimensions. This suggests that a three-component linear

mixing model may provide a consistent and accurate way to

represent urban reflectances. A more detailed discussion of

themixing space concept is provided byBoardman (1989a,b).

In contrast to the consistency in urban mixing spaces, the

land cover mosaics in nonurban environments produce a

diversity of mixing space topologies. Fig. 5 shows examples

of four IKONOS images selected from different environ-

ments and their mixing space representations. Even though

all of these environments contain several different types of

land cover of varying reflectance, none of their mixing

spaces resembles the triangular mixing space that is char-

acteristic of the urban areas used in this study. Agricultural

areas do, however, often exhibit a triangular mixing space

similar to those of the urban areas. These triangular mixing

spaces bear a strong resemblance to the ‘‘tasseled cap’’

feature space described by Kauth and Thomas (1976) and

can be considered representative of visible/near infrared

reflectance in certain instances where the scene contains

high albedo, low albedo and vegetation endmembers simul-

taneously. In fact, it would be possible to define a transfor-

mation for IKONOS imagery analogous to the tasseled cap

transform defined for Landsat TM and MSS. The spectral

mixture analysis described below is, however, preferable to

a predefined transformation because it can represent a wider

variety of spectral endmembers and can accommodate

different atmospheric effects.

The topology of the mixing spaces depends on the

combination of reflectance patterns contained within the

image. In general, the larger urban images used in this study
Fig. 6. Scale dependence of variance partition. Normalized eigenvalue distributions

space accounts for much of the variance (20–50%) in urban reflectance at spatial s

center areas show a greater fraction of variance associated with the primary dimen

the greater abundance of vegetated area within the larger images than within the
had mixing spaces similar to those of the 1-km images

shown in Fig. 4. Other 1-km images chosen from areas

surrounding the built-up part of each city sometimes had

different mixing space topologies, but inclusion of the built-

up areas generally results in the triangular topology seen in

Fig. 4. A similar topology is seen in the low-order dimen-

sions of urban mixing spaces generated from Landsat and

AVIRIS imagery (Small, 2001b). Spectral dimensionality

does, however, tend to diminish at smaller spatial scales

(Small, 2001c). In the case of IKONOS urban imagery, this

generally results in a different partition of variance among

the principal components rather than a change in mixing

space topology. Fig. 6 indicates that the larger urban scenes

generally have a greater fraction of the variance in the

second principal component as a result of a greater percent-

age of vegetated area. The 1-km images generally have a

greater fraction of variance associated with the low-order

dimension. This is not surprising as the smaller areas have a

lower areal percentage of vegetation and are dominated by

spectral variations along the ‘‘gray axis’’ between the high

albedo and low albedo endmembers.

The topologic consistency of the mixing spaces is

complemented by a consistency in endmember reflectan-

ces. Fig. 7 shows the radiance vectors corresponding to

pixels at the apexes of each mixing space. The amplitudes

of the endmembers are variable but the shape is remark-

ably consistent. The low albedo endmember generally

corresponds to deep shadow so its shape represents the

atmospheric path radiance component that is present in

every pixel. The most pronounced differences are related

to atmospheric conditions, but there is also a moderate

correlation (0.67) between the peak amplitude of the high

albedo endmember and the solar zenith angle at the times

the images were acquired. The collection geometry varied

between elevation angles of 61j and 87j. Given the
for larger urban areas (left) indicate that the second dimension of the mixing

cales of several kilometers. Eigenvalue distributions of smaller (1 km2) city

sion spanned by high and low albedo endmembers. The difference is due to

1-km2 city centers.



Fig. 7. Spectral endmembers. Radiance vectors corresponding to the apexes of the triangular mixing spaces show a remarkable consistency of form, although

amplitude is variable. Variations in amplitude result from actual differences in endmember reflectance as well as differences in illumination and atmospheric

conditions. The slope of the low albedo endmembers (thin curves) is consistent with wavelength-dependent atmospheric scattering effects. IKONOS DNs were

converted to radiance using the calibration coefficients provided by Space Imaging and NASA (Zanoni et al, Pagnutti et al, this volume).
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differences in solar zenith, collection geometry, atmospher-

ic turbidity, it is surprising that the amplitude differences

among the endmembers are not greater.
4. Linear mixture modeling

The consistency of the spectral mixing space for a variety

of urban areas suggests that a simple three-component linear

mixture model may provide a consistent, general character-

ization of urban reflectance. Representing urban reflectance,

of individual pixels or aggregate distributions, as three-

component mixtures makes it possible to compare reflec-

tance patterns within and among cities. The high albedo,

low albedo and vegetation endmembers also provide a

useful physical description since albedo and vegetation

cover are two of the primary surface properties that control

urban microclimate. While the statistical moments of the

mixing space (mean, variance, skewness, etc.) provide a

description of the aggregate reflectance of an urban area,

each individual pixel within the aggregate can be described

by its relative areal abundance of each endmember. Spectral

mixture modeling provides a way to derive estimates of

endmember abundance for individual pixels.

Inversion of the urban three-component linear mixing

model for each pixel yields fraction estimates for each

endmember. The linear three-component mixing model is

given in continuous form by:

RðkÞ ¼ fHEHðkÞ þ fVEVðkÞ þ fLELðkÞ ð1Þ

where R(k) is the observed radiance profile, a continuous

function of wavelength k. The E(k) are the spectra
corresponding to the high albedo (H), vegetation (V) and

low albedo (L) endmembers. The corresponding endmem-

ber fraction estimates we seek are fH, fV and fL. The discrete

implementation of the model, applicable to IKONOS MSI

radiances, is given by:

fHe 11 þ fVe12 þ fLe13 ¼ r1

fHe21 þ fVe22 þ fLe23 ¼ r2

fHe31 þ fVe32 þ fLe33 ¼ r3

fHe41 þ fVe42 þ fLe43 ¼ r4 ð2Þ

where ri is the observed radiance vector corresponding to

discrete estimates of integrated radiance within the four

IKONOS MSI bands. The eij are the endmember radiance

vectors corresponding to the high albedo (H), vegetation (V)

and low albedo (L) endmembers. The indices i and j indicate

the spectral band and endmember of each element, respec-

tively. An additional unity sum constraint equation can be

incorporated to urge the fractions to sum to 1. With four or

less endmembers, the system has more equations than

unknowns and can be solved for an ‘‘optimal’’ set of

endmember estimates chosen to minimize misfit to the

observed radiance vector.

The overdetermined linear mixing model, incorporating

measurement error, can be written in matrix notation as:

r ¼ Ef þ E ð3Þ

where E is an error vector which must be minimized to find

the fraction vector f which gives the best fit to the observed

radiance vector r. There are a number of ways to solve this

type of problem (e.g., Pech et al., 1986; Settle & Drake,
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Fig. 9. Maximum endmember fractions and RMS error distributions. (A) The cumulative distributions of the largest endmember fraction of each pixel span the

full range of permissible maximum fractions. Cities with significant areas of unmodeled soil (Caraz, Juarez, Phoenix, Pune, and Salvador) have more than 10%

area with maximum fractions less than 0.33. The three-component model does not account for the soil endmember and cannot replicate the spectra of these

pixels. (B) The RMS of the differences between the modeled and observed radiance vectors is normalized by mean pixel radiance to account for the magnitude

of the misfit relative to the amplitude of the observed radiance vector. Distributions of radiance-normalized RMS error are consistently low with error

amplitudes less than 3% of the mean radiance of the corresponding pixel. The three urban areas with higher errors (Bangkok, Caraz, Salvador) correspond to

examples with an unmodeled fourth endmember in the third dimension.
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1993; Smith, Johnson, & Adams, 1985; Smith et al., 1990).

The procedure used to invert the urban three-component

linear mixing model for endmember reflectances is described

in detail and the stability of the inversion is demonstrated in

Small (2001a). A unit sum constrained least squares inver-

sion of the three-component model was performed on all 14

of the 1-km images. The endmember fraction images for

seven of the 1-km IKONOS images are shown in Fig. 8.

Most of the urban areas used in this study were characterized

by high fractions of the low albedo endmember. This

represents the abundance of shadow as well as the frequent

use of low albedo building materials in urban areas. Shadow

can mask true target reflectance thereby increasing the

apparent abundance of low albedo targets.

Inversion of the linear mixing model produces areal

abundance estimates, but these should not be interpreted in

the context of ‘‘subpixel resolution’’. Areal estimation of an

individual feature within a single pixel is complicated by

the spatial variation in the sensor’s response function. The

nonlinear mixing effects of the sensor’s point spread

function can introduce significant error when the spatial

scale of the endmember fractions is comparable to the scale

of the GIFOV. The endmember fraction estimates are most

accurate when the spatial scale of the endmember compo-

nents is small relative to the GIFOV. This nonlinear mixing

is further complicated by the application of modulation

transfer function compensation (MTFC) filters. The MTFC

procedure attempts to compensate for the spatial averaging
Fig. 8. Endmember fraction estimates and linear mixing model errors. Inversion

endmember fraction estimates for each pixel in the image. Endmember fraction i

calculated for the difference between the observed radiance and the forward im

endmember fraction estimates. RMS error images range from 0% to 6% and are dis

the three-component linear model. Most urban areas have a strong low albedo co

building materials.
effects of the point spread function by increasing the

contrast of adjacent pixels (Pagnutti, Ryan, Kelly, & Hole-

kamp, this issue; Ryan et al, this issue; Zanoni et al., this

issue). To quantify the effect (positive or negative) of the

MTFC on the fraction estimates, it would be necessary to

compare field validation measurements with estimates

derived from the same imagery with and without MTFC

applied. All but two of the IKONOS images (New York

and Hollywood) used in this study had MTFC applied as

they were acquired before the NASA investigators were

given the option of processing without MTFC.

Cumulative distributions of the maximum fractions for

each pixel in each image are shown in Fig. 9A. These

distributions indicate that most of images have fraction

distributions spanning the full range (0.33 to 1.0) of allow-

able abundances. Maximum fractions near 1.0 are associated

with pure pixels while maximum fractions near 0.33 are

associated with mixed pixels. Maximum fractions below

0.33 indicate that the three-endmember model did not

accurately represent some of the radiance vectors. In this

study, cities with large areas of unmodeled soil had signif-

icant numbers of pixels with fractions that did not sum to

unity. For some of these cities (Caraz, Juarez, Phoenix,

Pune, Salvador), a four-endmember model containing a soil

endmember would have been more appropriate.

Several of the urban areas in this study had mixing

spaces that could accommodate a fourth endmember. In

most of these cases, this fourth endmember would corre-
of a constrained, three-component linear mixture model results in three

mages range from 0 (black) to 1 (white). The RMS error for each pixel is

plementation of the linear model using the endmember vectors and the

played with a 2% linear stretch to emphasize specific features not well fit by

mponent corresponding to shadow and the low surface reflectance of many
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spond to soil, but in some of the urban areas the fourth

endmember appears to represent a spectrally distinct high

albedo roofing material. Adding a fourth endmember will

generally reduce the RMS error so the three-component

linear mixing model provides a conservative indication of

how well linear mixture models can be expected to represent

urban reflectance in IKONOS imagery.

The suitability of the linear mixing model is indicated by

the magnitude and distribution of the RMS error—the root

mean square of the difference between the observed radi-

ance vectors and the modeled radiance vectors. The mod-

eled radiance vector is generated by forward implementation

of the linear mixing model as a fraction-weighted sum of the

endmember radiance vectors using the estimated fractions.

Distributions of normalized errors are shown in Fig. 9B. The

RMS error of each pixel is normalized by the mean radiance

of the pixel to indicate the magnitude of the error relative to

the amplitude of the observed radiance vector. Fig. 9B

indicates that the majority of the pixels were fit to within

3% of the amplitude of the observed radiance vector in most

scenes. Three of the images used in the study had larger

errors. These images had mixing spaces indicating the

presence of a fourth endmember. It is encouraging, however,

that even in these cases the errors rarely exceed 6% of the

observed amplitude.

A low RMS error is necessary but not sufficient condi-

tion for accurate estimation of actual areal abundances of

specific endmember materials within the GIFOV. In other

words, a small error does not guarantee that the endmember

abundances will agree with field validation measurements,

but a large error does indicate that the endmembers and

fraction estimates do not accurately represent the composite

radiance measured by the sensor for a given pixel. Field

validation is necessary if the endmember abundances are to

be related to specific quantities of endmember materials on

the ground. The fraction estimates produced in this study

have not been validated with field measurements, but the

small errors to the observed radiances indicate that the three-

component linear model is generally well posed and worthy

of validation and further investigation.

It is important to distinguish between spectral endmem-

ber abundances and specific target materials. Hyperspectral

imagery of urban areas reveals the presence of as many as

60 spectral dimensions (Green & Boardman, 2000; Small,

2001c) related to the wide variety of spectrally distinct

building materials (Herold et al., 2002). Many of these

materials are spectrally indistinguishable with broadband

sensors like IKONOS. High albedo roofing material is often

indistinguishable from high albedo soil while many low

albedo materials are indistinguishable from clear water and

deep shadow. Broadband sensors may not be able to dis-

criminate spectrally similar materials but the continuum

representation provided by mixture models accommodates

a far wider range of targets and conditions than hard

classification because it represents the continuous grada-

tions among spectrally distinct materials.
5. Potential applications

Representation of multispectral radiances, or surface

reflectances, as spectral endmember abundances provides

a simple way to describe reflectance properties imaged by

the IKONOS sensor. The strength of the spectral mixture

model is its ability to represent a wide variety of surface

reflectance types as simple combinations of endmember

abundances. The inversion of the linear mixing model is

computationally trivial compared to statistical classifications

like maximum likelihood. Spectral mixture analysis is

preferable to ‘‘hard classification’’ for many physical sci-

ence applications because it accommodates the fundamental

physical process responsible for the preponderance of mixed

pixels observed in almost all multispectral imagery. Repre-

senting a high-dimensional urban mixing space with only

three endmembers is obviously a gross simplification, but it

does provide a more flexible representation than hard

classifications which attempt to represent a continuum of

reflectance characteristics with exclusive membership in one

of a limited number of idealized classes. Endmember

fraction distributions can also be ‘‘hardened’’ into a finite

number of thematic classes if necessary (Adams et al., 1995;

Roberts et al., 1998). Spectral mixture models have the

added advantage of producing output in physically intuitive

units (fractional area). Relative abundances of high and low

albedo surface and vegetation can be converted to physical

quantities like albedo, pervious surface area and leaf area

index more easily than radiance measurements can and

more accurately than thematic classes can.

Vegetation fraction estimates derived from IKONOS

imagery provide a tool to monitor urban vegetation health

and abundance. An example of intraurban variations in

vegetation fraction is shown for Chicago in Fig. 10. The

spatial distribution and abundance of vegetation has a direct

impact on the urban environment by modulating solar

energy flux and evapotranspiration. Urban vegetation may

also have an impact on urban air quality as leaves sequester

surface reactant pollutants and particulates (Abdollahi &

Ning, 2000). Mapping spatial distribution and abundance of

urban vegetation is therefore important for modeling urban

air quality. IKONOS’ 4-m GIFOV approaches the scale of

crown diameter for many tree species. Quantitative assess-

ment of vegetation fraction at this scale could be useful for

monitoring defoliation and blight in large urban parks.

Vegetation distribution can also be used as a proxy for

pervious surface when modeling urban hydrology (Small,

2002b).

Examination of spectral mixing spaces may also prove

useful for feature extraction tasks. In spite of its limited

spectral resolution, IKONOS’ 11-bit radiometry is capable

of distinguishing subtle differences in surface reflectance

that would be indistinguishable with 8-bit imagery. IKO-

NOS combination of high spatial resolution and bit depth

results in greater clustering within the mixing space. The

Phoenix mixing space shown in Fig. 4 provides an example



Fig. 10. Example applications of spectral mixture analysis of urban IKONOS imagery. Vegetation fraction estimates have sufficient spatial resolution to map

intraurban vegetation abundance at street scale in Chicago. Warmer colors show higher vegetation abundance with fractions greater than 50% saturated red.

Localization of features with consistent reflectance properties within the mixing space can facilitate extraction of features like road networks (green) in

Pasadena. Includes materials n Space Imaging.
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of this clustering (Fig. 4). Targets with distinct and consis-

tent reflectance will appear as distinct clusters in IKONOS’

mixing space whereas their reflectance would be mixed

with, or indistinguishable from, adjacent features in the

mixing space of a sensor with lower spatial resolution or

fewer resolvable brightness levels. An example of a fine

scale feature extraction from mixing space clustering is

shown in Fig. 10. The paved road surfaces in this image

of Pasadena have sufficiently consistent and distinct reflec-
tance that they can be discriminated from other low albedo

features with relatively high accuracy.
6. Conclusions

Spectral mixture analysis provides a physically based

approach to quantify the optical reflectance properties of the

urban mosaic. The spectral mixing space concept accom-
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modates the inevitable existence of mixed pixels and pro-

vides insight into the variety of distinct and gradational

reflectance patterns present in IKONOS imagery. The mix-

ing space representation also reveals the presence of spectral

endmembers and the extent to which mixing among the

endmembers is linear. When mixing is predominantly linear,

it is possible to define linear mixture models that can be

inverted to yield endmember fraction estimates and meas-

ures of misfit to observed data.

Spatial autocorrelation of IKONOS panchromatic imag-

ery provides statistical estimates of the spatial scale of urban

reflectance variations. Two-dimensional autocorrelation

functions consistently show a well-defined, axisymmetric

peak with a width corresponding to the spatial scale of the

most areally abundant features. The width of the peak

therefore provides an estimate of the characteristic spatial

scale of the high contrast reflectance patterns corresponding

to individual features within the urban mosaic (roads,

buildings, trees, etc.). The distribution of length scale

estimates from 6357 sites in 14 urban areas indicates that

the majority of sites have characteristic length scales be-

tween 10 and 20 m. This explains why urban areas are

characterized by spectral heterogeneity when imaged by

moderate resolution (20–30 m) sensors. This also suggests

that a significant fraction of IKONOS’ 4-m pixels will be

spectrally heterogeneous in urban imagery. This is sup-

ported by the maximum fraction distributions in Fig. 9.

Principal component transformation of urban IKONOS

imagery allows reflectance patterns to be interpreted in the

context of a spectral mixing space. Eigenvalue distributions

of the imagery used in this study indicate that the majority

(55% to 95%) of image variance corresponds to albedo

variations represented in the first principal component (PC).

A significant, but lesser, fraction of image variance is

associated with vegetation. In the urban areas investigated

here, almost all (>96%) image variance is associated with

the first two PCs. The remaining two PCs contain useful

information about distinct reflectances not discriminated in

the first two PCs and may be useful for isolating additional

endmembers. The spectral mixing space defined by the first

three principal components consistently takes the form of a

triangular scatterplot with linear or concave edges indicating

that mixing is predominantly linear. The spectral endmem-

bers residing at the apexes of the mixing space correspond

to high albedo, low albedo and vegetation endmembers. The

mixing spaces of some of the urban areas used in this study

also revealed the presence of a fourth endmember, usually

corresponding to soil.

Inversion of a simple three-component linear mixture

model produces stable, consistent estimates of endmember

abundance fractions for each pixel in the image. RMS

misfits between observed radiance vectors and modeled

radiance vectors based on fraction estimates are generally

less than 3% of the mean of the observed radiance vector.

Most of the urban areas used in this investigation are

dominated by the low albedo endmember as a result of
shadowing and low reflectance building materials. Abun-

dance of vegetation and high albedo features varies consid-

erably within and among cities. Endmember abundance

maps derived from IKONOS can be used to constrain spatial

variations in solar energy flux and evapotranspiration as

well as to map spatial distributions of vegetation and

pervious surfaces.
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