Salt Marsh Loss
Possible Causes, Restoration Needs, and Research Opportunities

CHARLES ROMAN
National Park Service
North Atlantic Coast Cooperative Ecosystem Studies Unit

North Atlantic Coast
Cooperative Ecosystem Studies Unit

Research to address coastal issues within an urban landscape:
- Nutrient enrichment and contaminants
- Invasive species
- Shoreline change
- Habitat restoration
- Species harvest
- Resource inventory and monitoring

http://www.ci.uri.edu/naccesu/

Marsh Loss at Jamaica Bay, NY

Examples of Marsh Loss in Jamaica Bay
(source: Hartig et al. 2002)

<table>
<thead>
<tr>
<th></th>
<th>1974 acres</th>
<th>1999 acres</th>
<th>% Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Marsh Islands</td>
<td>1,974</td>
<td>1,223</td>
<td>38%</td>
</tr>
<tr>
<td>Individual Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Egg Marsh</td>
<td>84</td>
<td>52</td>
<td>38%</td>
</tr>
<tr>
<td>Yellow Bar Hassock</td>
<td>172</td>
<td>96</td>
<td>44%</td>
</tr>
<tr>
<td>Elders Point</td>
<td>98</td>
<td>22</td>
<td>78%</td>
</tr>
</tbody>
</table>

Marsh Loss, Jamaica Bay

Courtesy of NY DEC
Why are Jamaica Bay Marshes Being Lost? (2001 Blue Ribbon Panel and Science Board)

- Accelerated Rate of Sea Level Rise
- Lack of Sediment to Marsh Surface
- Wrack
- Dense Mussel Populations Alter Hydrology
- Contaminants and Nutrients
- Waterfowl Grazing
- Plant Pathogens

Relative Sea-Level Rise (Sandy Hook, NJ)

1. Absolute or Eustatic Rise in Sea Level = 1.3 mm y⁻¹
2. Regional Land Subsidence = 2.5 mm y⁻¹
3. Relative Sea Level Rise (tide gauge) = 3.8 mm y⁻¹

(Source: Gornitz et al. 2002)

Salt Marsh Development in Response to Sea Level Rise

Salt Marsh Peat

Years BP
- 9 cm: 25 yrs ago
- 15 cm: 100 yrs
- 60 cm: 200 yrs ago

Tidal Creek

Future

Salt Marsh Development

Sea Level Rise

Salt Marsh Elevation Change

Monitoring Salt Marsh Elevation Change
Measuring sediment accretion on marsh surface
Cryo-core technique

Factors Contributing to Marsh Loss

- Sediment Deficit to Marsh Surface
 SETs (Cahoon, USGS)
 Sediment Budget (Cochran & Goodbred, Stony Brook Univ.)
- Wrack (NPS study)
- Dense Mussel Population Alters Hydrology
 Mussel Berm Hypothesis (Franz, Brooklyn College)
- Contaminants, Nutrients (Kolker, Stony Brook Univ.)
- Waterfowl Grazing (Jamaica Bay EcoWatchers)
- Pathogens and Spartina
Big Egg Marsh Experimental Restoration

- Dredge with high-pressurized spray nozzle applies sediment over marsh surface
- Spray achieved a maximum distance of 120 ft.
- Sediment was applied in varying thickness (8 – 17 inches), but some depressions of several feet were filled.
- The fill material was 97% sand. 7,000 cubic yards was applied.

Fall 2003
Late Summer 2004 (1 growing season)

What measures can we take to reverse wetland loss and restore wetlands in Jamaica Bay?

Determine factors related to wetland loss
- role of local subsidence
- response of Spartina to high nutrients and contaminants
- sediment core analysis to refine marsh development history
- pathogens on Spartina (e.g., brown marsh in Louisiana)
- develop models that account for interactions of sea level, subsidence, nutrients, biotic processes, etc.

Design and implement remedial strategies

Establish pilot marsh restoration sites
- evaluate different restoration techniques
 - thin layer spray at Big Egg (small scale)
 - sediment application at Elder’s Marsh (large scale)
 - Jamaica Bay fringe or periphery area restorations
 - Other techniques?
- determine long-term sustainability of restored sites