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Summary	

An	assessment	is	presented	of	coastal	flooding	hazards	in	Boston,	MA,	including	
future	changes	with	sea	level	rise	out	to	the	2080s.		The	10‐,	100‐,	and	500‐year	
flood	elevations	were	computed	by	fitting	probability	distributions	to	annual	
maximum	storm	tide	elevations	from	the	historical	Boston	tidal	gauge	dataset.		
Using	three	different	distribution	fitting	procedures,	we	find	small	differences	in	
results,	ranging	by	6	cm	for	the	100‐year	flood	(1%	chance	per	year	flood),	but	we	
choose	one	with	high‐end	results,	to	be	conservative.		We	find	present‐day	(2015)	
flood	levels	are	2.91	m	NAVD88,	for	the	1%	chance	flood.		Considering	median	and	
high‐end	sea	level	rise	projections,	increases	to	the	likelihood	of	flooding	were	
calculated	under	selected	sea	level	scenarios	for	the	2020s,	2050s,	and	2080s.		
Following	a	median	sea	level	rise	trajectory	into	the	future,	today’s	1%	chance	per	
year	flood	will	have	a	2%	chance	of	occurring	per	year	in	the	2020s	and	a	9%	
chance	per	year	in	the	2050s,	nearly	a	factor	of	10	increase.	

1 Storm	Tides	and	Return	Periods	

1.1 NOAA	Storm	Tide	Data	
	 To	determine	flood	elevations,	we	first	considered	the	water	elevations	listed	
by	NOAA	at	the	Boston	gauge,	Station	8443970	(NOAA,	2015).		NOAA	provides	the	
1%,	10%,	50%,	and	99%	exceedance	probability	levels,	corresponding	to	the	100‐,	
10‐,	2‐,	and	1‐year	return	periods,	respectively.		In	addition	to	providing	these	
elevations	for	the	established	1983‐2001	epoch,	NOAA	provides	estimates	at	the	
2015	sea	level	by	projecting	the	short‐term	trend	to	the	current	year.		For	our	
analysis,	we	considered	the	2015	projections.			Because	we	wanted	to	obtain	a	500‐
year	return	period	water	level,	which	NOAA	does	not	provide,	and	to	verify	the	
accuracy	of	the	NOAA	numbers,	we	then	produced	our	own	exceedance	curves	from	
the	original	data.	



1.2 Data	Selection	for	Return	Period	Calculations	
	 To	produce	the	exceedance	curves,	we	first	downloaded	the	hourly	research‐
quality	dataset	for	the	Boston	gauge	from	the	University	of	Hawaii	Sea	Level	Center	
(UHSLC	2014),	dating	back	to	May	of	1922	and	continuing	through	the	end	of	2014.		
Before	proceeding	with	the	analysis,	we	checked	the	quality	of	the	data.		We	first	
calculated	the	annual	and	monthly	maxima	in	Excel.		Any	dates	listed	in	the	
metadata	as	missing,	replaced,	or	having	questionable	fluctuations	were	
incorporated	into	a	spreadsheet.		Then,	we	downloaded	the	entire	dataset	for	
Portland,	ME,	the	nearest	station	with	a	long	record.		We	then	computed	the	
monthly	and	annual	maxima	in	Portland.		In	Excel,	we	flagged	any	instances	where	
the	two	stations	had	different	dates	of	maxima,	and	we	flagged	all	of	the	dates	that	
may	have	included	missing,	replaced,	or	questionable	data.		We	further	analyzed	all	
of	the	flagged	dates.		We	looked	NOAA	Tides	and	Currents’	list	of	the	top	12	storm	
tides	for	the	Boston	gauge	(NOAA	2015)	to	check	that	all	storms	listed	in	the	top	12	
were	in	our	annual	maximum	list;	all	storms	were	included	in	our	list,	and	both	the	
corresponding	times	and	water	levels	were	consistent.	We	then	looked	at	NOAA’s	
graphs	of	each	year	from	1922	through	2014	to	visually	assess	any	potential	
discrepancies	in	the	annual	maxima	in	Boston.		Only	1974	had	a	potential	missing	
maximum,	but	even	this	looks	unlikely,	as	Portland	had	a	continuous	data	set	
throughout	1974,	and	its	annual	maximum	occurred	on	the	same	day	as	Boston’s	
recorded	maximum.		There	was	one	point	in	November	1974	when	Portland	
recorded	a	level	close	to	the	annual	maximum	during	Boston’s	missing	period.		In	all	
other	years,	every	measure	of	comparison	indicated	that	our	annual	maximum	
series	includes	the	true	annual	maximum	at	the	Boston	gauge.	
	

1.3 Computing	Flood	Exceedance	Statistics	with	Multiple	Methods	
	 With	the	data	set’s	validity	confirmed,	we	proceeded	with	the	flood	
exceedance	analysis.		Using	MATLAB,	we	again	calculated	the	annual	maximum	
water	levels	at	the	Boston	gauge.		We	then	removed	the	trend	in	mean	sea	level	from	
each	year’s	maximum	water	level,	creating	an	annual	maximum	storm	tide	(AMST)	
dataset.		The	AMST	data	are	shown	in	Figure	1.		
	



	
Figure	1:		Annual	maximum	storm	tides	(AMST)	for	the	Boston	tide	gauge,	1922‐
2014.	 	



	 We	fit	the	AMST	data	with	distributions	using	three	commonly	used	
approaches	for	flood	exceedance	statistics,	the	Generalized	Extreme	Value	(GEV)	
fitted	with	Maximum	Likelihood	Estimator	(MLE)	method	(e.g.	Zervas	et	al.,	2013),	
the	GEV	fitted	with	the	L‐Moments	method	(e.g.	FEMA,	2014),	and	the	Generalized	
Pareto	distribution	(GP)	fitted	with	the	MLE	method.		The	raw	rate	distribution	and	
fitted	GEV	distribution	(L‐Moments	method)	are	shown	in	Figure	2.		
	 Using	the	fitted	distributions,	we	obtained	precise	values	for	the	desired	
return	periods	(Table	1).		The	fitted	distributions	are	shown	with	the	empirical	data	
in	Figure	3.		Comparing	the	three	different	distribution	fitting	procedures,	as	well	as	
the	NOAA	results,	we	find	small	differences,	ranging	by	6	cm	for	the	100‐year	flood.	
In	subsequent	analyses,	we	utilize	the	GEV	fitted	with	L‐Moments,	with	high‐end	
results,	to	be	conservative.			
	
	

	
Figure	2:		Rate	distribution	for	storm	tide,	with	GEV	fit	(L‐moments	method)	
	
	
Table	1:		Results	–	storm	tides	(relative	to	MSL)	for	three	return	periods,	based	on	
three	methods	plus	NOAA’s	results.		The	GEV	distribution	(L‐Moments)	results	are	
highlighted	and	were	used	in	the	mapping	(a	conservative,	high‐end	choice).	
	

10‐year  100‐year  500‐year 

NOAA's GEV1  2.62  2.95  n/a 

GEV_MLE  2.60  2.90  3.11 

GEV_LMom  2.59  2.94  3.18 

GP  2.63  2.89  3.01 



	
Figure 3:  Storm tide exceedance curves using three different methods (thick lines), with 
observations (circles) and 95% confidence intervals (thin lines). 
	
	
	 Additionally,	we	calculated	the	95%	confidence	intervals	surrounding	the	
storm	tide	return	periods	(Figure	3).		This	was	calculated	using	a	bootstrap	
technique,	wherein	the	existing	AMST	data	are	re‐sampled	with	repetition,	and	
1000	repetitions	of	the	historical	period	are	synthesized	and	analyzed.			

2 Sea	Level	Rise	Analysis	

2.1 Sea	Level	Rise	Projections	
	 We	also	performed	an	analysis	using	sea	level	rise	(SLR)	projections.		In	
order	to	determine	return	period	reductions	under	various	SLR	scenarios,	we	first	
obtained	SLR	estimates	from	the	Consortium	for	Climate	Risk	in	the	Urban	
Northeast	(CCRUN).		Sea	level	rise	for	Boston	was	estimated	(R.	Horton,	
unpublished	data)	following	methods	of	Horton	et	al.	[2015],	and	we	added	these	
values	to	our	current	exceedance	curves.		That	work	estimated	sea	levels	for	the	
2020s,	2050s,	and	2080s	using	two	representative	concentration	pathways	(RCPs)	
and	an	ensemble	of	24	global	circulation	models	(GCMs).		For	each	of	the	three	
decades,	we	were	provided	with	a	10th	percentile	estimate,	the	range	of	the	25th	to	
75th	percentile,	and	the	90th	percentile.		We	wanted	to	show	a	median	and	high	
scenario	for	each	decade.		To	best	estimate	the	median	with	the	information	
provided,	we	used	the	arithmetic	mean	of	the	25th	and	75th	percentile.		For	the	high	
estimate,	we	used	the	provided	90th	percentile	values	as	shown	in	Table	2	below.	
	



Table	2:		Sea	Level	Rise	Values	Used	in	Analysis	(meters,	relative	to	2000‐2004	
baseline	sea	level)	
	 	
	 Median	(Estimated	

50th	Percentile)	
High	(90th	
Percentile)	

2020s	 0.13 0.23
2050s	 0.36 0.66
2080s	 0.60 1.30
	
	

2.2 Return	Period	Reductions	under	Sea	Level	Rise	Scenarios	
After	superimposing	the	six	different	sea	level	rise	values	in	Table	2	on	our	

flood	exceedance	curve	data,	we	determined	the	return	period	reductions	under	
each	by	finding	the	return	periods	on	the	SLR	curves	that	corresponded	to	the	water	
elevations	at	the	2‐,	10‐,	100‐,	and	500‐year	return	periods	on	the	original	curves.		
The	results	are	shown	in	Table	3	below.		Increases	in	the	annual	percent	chance	of	
flooding	are	shown	in	Table	4.	

	
	
Table	3:		Flood	Return	Periods	under	SLR	Scenarios	(GEV‐LMom	method)	
	
		 		 Corresponding	Return	Periods	(Years)	

Flood	
Return	
Period	in	
Years	

2015	
Flood	
Height	(m	
NAVD88)	

2020s	
Median‐

SLR

2020s	
High‐
SLR

2050s	
Median‐

SLR

2050s	
High‐	
SLR	

2080s	
Median‐

SLR

2080s	
High‐
SLR

10	 2.57	 5.6 <5 <5 <5	 <5 <5
100	 2.91	 53.6 27.4 11.5 <5	 <5 <5
500	 3.16	 271.6 139.9 58.6 8.1	 11.8 <5

	
	
Table	4:		Annual	chances	of	flooding	under	SLR	Scenarios	(GEV‐LMom	method)	
	
		 		 Corresponding	Annual	Percent	Chance	of	Flooding	

Annual	
percent	
chance	of	
flooding	

2015	
Flood	
Height	(m	
NAVD88)	

2020s	
Median‐

SLR

2020s	
High‐
SLR

2050s	
Median‐

SLR

2050s	
High‐	
SLR	

2080s	
Median‐

SLR

2080s	
High‐
SLR

10%	 2.57	 18% >20% >20% >20%	 >20% >20%
1%	 2.91	 2% 4% 9% >20%	 >20% >20%

0.2%	 3.16	 0.4% 0.7% 2% 12%	 9% >20%
	



3 Mapping  	

3.1 Flood	Analysis	Method	
Static	assumptions	(superposition	and	“bathtubbing”)	methods	are	often	used	

to	draw	coastal	flood	zones	with	and	without	added	sea	level	rise	(SLR),	in	widely‐
used	tools	such	as	Climate	Central’s	Surging	Seas.		The	superposition	approach	
(used	for	sea	level	rise	columns	in	Tables	3	and	4)	assumes	that	sea	level	rise	can	
simply	be	added	on	top	of	a	flood	elevation,	and	bathtubbing	assumes	that	a	flood	
elevation	in	the	harbor	can	be	extrapolated	over	land	areas	until	it	reaches	the	
equivalent	land	elevation	contour.		All	topographic	elevations	at	or	lower	than	this	
height	are	considered	flooded.	

		For	flooding	during	extra‐tropical	cyclones	(e.g.	Nor’easters),	these	static	
assumptions	generally	give	an	excellent	approximation	of	flood	heights,	and	results	
are	usually	within	a	few	percent	of	dynamic	modeling	results	(Orton	et	al.,	2015).	
The	New	York	City	Panel	on	Climate	Change	official	results	use	the	static	
assumption,	based	on	the	finding	that	the	differences	between	static	and	dynamic	
mapping	methods	are	typically	much	smaller	than	uncertainties	in	sea	level	rise	or	
flood	return	periods	(Patrick	et	al.	2015).		

It	should	be	noted	that	static	mapping	errors	will	grow	with	increasing	wind	
speeds	(e.g.	hurricanes),	and	for	increasing	floodplain	widths	(kilometers	or	more),	
but	the	floods	mapped	here	for	Boston	are	extratropical	storms	and	the	floodplain	
widths	were	typically	shorter.	

3.2 Land	Elevation	Data	
Topographic	data	of	Boston	was	available	on	the	MassGIS	web	site;	we	used	the	

Boston	2009	LIDAR	dataset	(MassGIS	2012).		LIDAR	data	was	available	in	small	
tiles,	and	we	downloaded	the	tiles	encompassing	the	neighborhoods	of	interest	
(tiles	17K	through	24O,	inclusive).		We	imported	the	TIFF‐format	LIDAR	tiles	into	
ArcMap	and	combined	them	into	a	single	mosaic	layer.		The	mosaic	layer	required	
some	manual	editing	to	correct	some	areas	where	the	water	surface	in	the	harbor	
displayed	at	an	erroneously	higher	elevation	than	the	surrounding	water.			

The	DEM	does	not	account	for	closure	of	the	Charles	River	dam’s	tide	gate,	yet	it	
is	typically	closed	during	a	flood	event.	To	account	for	this	important	blockage	of	
water	flow	from	the	harbor	into	Charles	River	and	neighborhoods	like	Back	Bay,	the	
DEM	was	edited	before	we	did	our	flood	mapping,	to	raise	it	at	this	location	to	the	
height	of	the	tide	gate,	3.73	m	NAVD88.		

There	are	two	low‐lying	pathways	where	flood	water	can	flow	and	flood	the	
Back	Bay	areas	around	Charles	River	–	one	around	the	dam,	and	another	along	a	
below‐grade	railway	in	Cambridge.		Two	options	are	available	in	the	flood	mapper	–	
(1)	a	case	where	narrow	flood	pathways	are	left	open	(default),	and	(2)	a	case	
where	these	pathways	are	blocked,	so	that	there	is	no	back‐bay	flooding.		Case	#1	is	
an	extreme	case	that	allows	water	to	flood	all	of	the	Back	Bay	areas	up	to	the	
offshore	flood	elevation,	and	case	#2	is	an	optimistic	case	that	assumes	the	city	
takes	precautions	to	block	these	pathways	when	a	storm	is	coming.	The	reality	if	a	
major	coastal	flood	occurs	is	likely	to	be	either	case	#2	(protection),	or	something	in	
between	case	#1	and	#2.		



3.3 Flood	Mapping	
With	the	land	and	open	water	elevations	corrected,	we	could	determine	flood	

depths	in	ArcGIS	using	the	static	bathtub	flood	mapping	assumption.		We	used	the	
raster	math	function	in	ArcGIS	to	subtract	the	land	surface	elevation	from	each	flood	
elevation	as	determined	in	Section	1	and	shown	in	the	second	column	of	Table	3.		
We	used	a	systematic	approach	to	remove	areas	without	hydraulic	connectivity	to	
the	open	water	using	the	NOAA	Coastal	Services	Center	methodology	(NOAA	2012).		
This	approach	involved	using	a	number	of	tools	in	ArcGIS’s	Spatial	Analyst	toolbox	
to	group	the	contiguous	flooded	areas	and	extract	only	the	largest	group,	the	one	
that	is	connected	to	the	open	water.		We	mapped	the	extent	of	the	10,	100,	and	500‐
year	floods	across	Boston,	and	Table	3	shows	how	return	periods	shrink	in	future	
decades	due	to	sea	level	rise.	 	

4 Conclusions	
The	results	show	that	sea	level	rise	could	reduce	the	return	periods	(increase	the	
annual	percent	chance)	of	extreme	coastal	flooding	events	significantly,	particularly	
at	longer	time	horizons	and	under	more	extreme	climate	scenarios.		For	example,	
following	a	median	sea	level	rise	trajectory	into	the	future,	a	100‐year	flood	will	
become	a	53.6‐year	flood	in	the	2020s	and	a	11.5‐year	flood	in	the	2050s.	Put	in	
terms	of	the	annual	chance	of	flooding,	the	100‐year	flood	currently	has	a	1%	
chance	of	occurring	per	year,	and	this	will	be	increased	to	about	2%	in	the	2020s	
and	9%	in	the	2050s,	ten	times	higher.		
	
The	results	can	be	seen	in	the	mapping	application	at	following	URL:	
ciesin.columbia.edu/fib/	
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