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EXECUTIVE SUMMARY  

Spatial vulnerability assessments and allied methods such as spatial impact assessment are useful tools for 

understanding patterns of vulnerability and risk to climate change at multiple scales, from local to global. 

The demand for vulnerability maps among development agencies and governments is increasing as 

greater emphasis is placed on scientifically sound methods for targeting adaptation assistance. This 

report provides a review of current practices in vulnerability mapping at different spatial scales across 

multiple sectors and systems, with a special emphasis on Africa and Latin America and the Caribbean. It 

critically assesses the approaches used in spatial vulnerability assessment, identifies accepted practices, 

and develops recommendations for practitioners. The report is intended to inform the work of the U.S. 

Agency for International Development (USAID) and its development partners, as well as climate and 

development researchers and practitioners more broadly. 

Mapping is useful because climate variability and extremes, the sensitivity of populations and systems to 

climatic stressors, and adaptive/coping capacities are all spatially differentiated. The interplay of these 

factors produces different patterns of vulnerability. Typically spatial vulnerability assessment involves 

data integration in which geo-referenced socio-economic and biophysical data are combined with 

climate data to understand patterns of vulnerability and, in turn, inform where adaptation may be 

required. Maps have proven to be useful boundary objects in multi-stakeholder discussions, providing a 

common basis for discussion and for deliberations over adaptation planning. Maps can help to ground 

discussions on a solid evidence base, especially in developing country contexts where geographic 

information may not be easily accessible for all stakeholders.  

That said, vulnerability mapping also has its shortcomings. While maps may identify where to target 

adaptation assistance, more detailed field research and consultation with stakeholders are necessary in 

order to determine what is needed for adaptation programming and how to develop local resilience. In 

other words, spatial vulnerability assessment may be a useful entry point for adaptation priority setting, 

but it is not a replacement for rigorous field-based vulnerability assessments that deepen understanding 

of current and future impacts on key economic sectors, environmental systems, or people groups. The 

power of spatial assessment is that it presents a large amount of information in a simplified and visually 

attractive manner. Yet this strength is also a weakness, insofar as uncertainties in the data and important 

analytical assumptions may be hidden from the user. A key recommendation of this technical report is 

that the data and methods used in spatial vulnerability assessment be clearly documented, and that map 

and other information on uncertainties and assumptions be included as part of any vulnerability mapping 

report.  Methodologies should be clearly documented, and technical annexes should provide detailed 

information on each map layer to ensure transparency and replicability 
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1.0 INTRODUCTION  

Spatial data integration and spatial analysis have become standard tools in the toolkit of climate change 

vulnerability assessments. The United Nations Environment Programme (UNEP) Programme of 

Research on Climate Change Vulnerability, Impacts and Adaptation (PROVIA) Research Priorities on 

Vulnerability, Impacts and Adaptation (PROVIA, 2013a) highlights òmeasuring and mapping vulnerabilityó 

as a first priority for supporting adaptation decision-making. In many cases òvulnerability assessmentó 

(VA) is synonymous with spatial vulnerability assessment (henceforth òspatial VAó), owing in part to an 

understanding that vulnerability and its constituent components exhibit high degrees of spatial and 

temporal heterogeneity (Preston et al., 2011). The purposes vary according to the specific study, but 

spatial VAs are generally intended to identify areas at potentially high risk of climate impacts ñ so-called 

climate change òhotspotsó (de Sherbinin, 2013) ñ and to better understand the determinants of 

vulnerability in order to identify planning and capacity building needs, or to better target funding and 

adaptation programs. There is as yet no consensus on what constitutes òbest practiceó in spatial VA. As 

the number of spatial VAs increases, and the conceptualizations, methods, and data used to assess 

vulnerability multiply, this is an opportune time to assess the strengths and weaknesses of commonly 

used methodologies; identify the most useful approaches; and to summarize data, methods, and results 

in a number of different thematic areas.  

While vulnerability mapping has become commonplace in recent years, there are still important issues 

that need to be addressed. By summarizing and synthesizing information in ways that are meant to be 

useful to policy (Abson et al., 2012), vulnerability maps are often developed with the goal of guiding 

resource allocations and influencing policy decisions. Yet there are impediments in terms of data 

availability and accuracy, methodological issues, and other issues that arise in any assessment process 

that need to be critically examined. Preston et al. (2011: 178) cite many of the benefits of vulnerability 

mapping, but also caution that there is òevidence that the power of maps has cultivated a bias regarding 

their inherent utility.ó They suggest that this assumption should be examined critically since, given the 

limitations, maps could just as easily obfuscate an issue as provide clarity. These issues are discussed in 

greater detail in Section 5.0. 

For this report, we conducted a broad search for published literature on spatial VA, climate vulnerability 

mapping, and geographic information system (GIS) approaches using the Thomson Reuters Web of 

Knowledge. We searched well known climate vulnerability and adaptation web portals such as Linking 

Climate Adaptation, Centre for Agricultural Bioscience International (CABI), AdaptNet, and Climate 

Front Lines. In addition, recognizing that much of the work is conducted by consulting groups or 

researchers under contract, and many times this never makes it into the peer-reviewed literature, we 

sent messages to relevant web fora and email discussion lists to identify gray literature (e.g., reports or 

working papers). The ratio of peer-reviewed literature (journal articles and book chapters) to gray 

literature cited in this report is roughly three-to-one. 

This paper is divided into several sections. Section 2.0 addresses the conceptualization of vulnerability 

and identifies the most common frameworks used in spatial VA. Section 3.0 provides an overview on 

data needs for spatial VAs, and Section 4.0 addresses common methods. Examples are given from 

multiple sectors, including cropping systems, livestock systems, water resources, fisheries, natural 

hazards, human health, poverty and food security, and urban vulnerability and critical infrastructure. The 

focus is on the developing world, with regional priority given to examples from Africa and Latin America 

and the Caribbean. Finally, Section 5.0 focuses on common issues related to spatial and temporal scale, 

uncertainty, and cartographic representation, and Section 6.0 provides key recommendations. Annex 1 
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provides a representative list of indicators used in spatial VAs and Annex 2 provides sample results for a 

number of spatial vulnerability assessments related to water resources.   
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2.0 DEFINITIONS AND 

FRAMEWORKS FOR 

VULNERABILITY 

ASSESSMENTS 

This section defines vulnerability and describes some of the major conceptual frameworks utilized in 

vulnerability mapping: the Intergovernmental Panel on Climate Change (IPCC) framework (Parry et al. 

2007), extended vulnerability frameworks (Turner et al., 2003; Birkmann, 2006), and the livelihood 

framework (Carney, 1998a and b). Beyond vulnerability frameworks, we also consider the IPCCõs 

Special Report on Climate Extremes (SREX) risk management framework, which focuses on the 

probabilities of extremes of different magnitudes (IPCC, 2012). 

Vulnerability can be defined as the degree to which a system or unit is likely to experience harm due to 

exposure to perturbations or stress (Turner et al., 2003).  The concept of vulnerability originated in 

research communities examining risks and hazards and entitlements (Adger, 2006). In the risk and 

hazards community, the vulnerability concept emerged out of the recognition by these research 

communities that a focus on stressors alone (e.g., floods or earthquakes) was insufficient for 

understanding responses of, and impacts on, systems exposed to such stressors. With the concept of 

vulnerability, it became clear that the ability of a system ñ whether an economy, an economic sector, a 

population group, or an ecosystem ñ to attenuate stresses or cope with consequences through various 

strategies or mechanisms constituted a key determinant of impacts on that system and system response.  

In the last decade, the terminology of vulnerability has been refined as researchers and policy makers 

have focused increasingly on vulnerability to climate change impacts. There are essentially two major 

conceptualizations of vulnerability (OõBrien et al., 2007; Füssel, 2009). The first is contextual vulnerability, 

which focuses on factors that determine a systemõs ability to withstand and recover from shocks. This 

approach comes out of political economy, and focuses on the intrinsic characteristics of a population 

(e.g., age, sex, socioeconomic status, ethnicity, livelihood strategies, etc.) and other factors (e.g., 

institutions, entitlements, historical inequalities, market forces) that may influence a populationõs (or 

systemõs) ability to withstand stressors. There is often a strong emphasis on differential vulnerabilities 

across social strata, and a concern for poor or marginal groups.  

The second conceptualization is outcome vulnerability (F¿ssel 2009: 5), which òrepresents an integrated 

vulnerability concept that combines information on potential climate impacts and on the socio-economic 

capacity to cope and adapt.ó The IPCC framework builds on this, in that vulnerability is considered to be 

a function of exposure to climate impacts, including variability and extremes, and the sensitivity and 

adaptive capacity of the system being exposed (Parry et al., 2007). The three components can be 

expanded on as follows: 

¶ E = exposure ñ size of the area and/or system, sector or group affected (i.e., does the event occur 

there or might it occur there under climate change?), and the magnitude of the stressor. 
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¶ S = sensitivity ñ the characteristics of a system or population and the governance/market 

structures that influence the degree to which it is affected by stressors.1 

¶ A = adaptive capacity ñ capacities of the system, sector or group to resist impacts, cope with 

losses, and/or regain functions. 

The IPCC definition suggests that the most vulnerable individuals, groups, classes, and regions or places 

are those that (1) experience the most exposure to perturbations or stresses, (2) are the most sensitive 

to perturbations or stresses (i.e., most likely to suffer from exposure), and (3) have the weakest capacity 

to respond and ability to recover (Schiller et al., 2001). In Section 3.0, we discuss further some of the 

conceptual issues underlying the IPCC definition, and provide examples of indicators that are frequently 

used to measure these components.  

The IPCC framework is the most commonly used 

framework for vulnerability mapping (de Sherbinin, 

2013; UNDP 2010). In this approach, composite 

spatial indices of vulnerability are developed based 

on spatial data layers representing the different 

components of vulnerability. These may be 

produced based on averaging/adding normalized 

indicators (i.e., variables whose value ranges have 

been standardized in order to make them 

comparable to one another) representing each 

component, or via principal components or 

cluster analysis. In a strict sense, this is what is 

meant by a vulnerability map. Often the individual 

components will be shown as separate maps or 

map insets. Figure 1 is a rendering of a 

vulnerability mapping for the southern part of 

Mali, including a combination of data layers rolled 

up into an overall vulnerability map. Areas of high 

vulnerability may be termed òhotspots.ó 

This report also describes a number of efforts 

based on process-based modeling (e.g., crop and 

hydrological models) in which climate scenario 

data are one input into models predicting future 

crop yields or water resource constraints. 

Although these are more properly identified as impact maps and not vulnerability maps, since they may 

or may not include sensitivity and adaptive capacity (some crop models make assumptions about 

improved seeds or soil water management), the results may be an input to a broader spatial VA. 

Similarly, there are what might be termed impact assessments (exposure mapping) in which only current 

and future climate impacts are considered. This kind of information can be considered in conjunction 

with sensitivity and adaptive capacity indicators to understand patterns of vulnerability, or in the context 

of risk management. 

                                                

1  In modeling approaches, sensitivity can represent the dose-response function (e.g., the impact on crop yields or water 

stress of an Xo rise in temperature or Y percent change in precipitation). 

FIGURE 1. SCHEMATIC DIAGRAM  OF 

DATA  LAYERS REPRESENTING 

ASPECTS OF VULNERABILITY  

 
Source: de Sherbinin et al., 2014 
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Extended vulnerability frameworks, such as those described in Birkmann et al. (2013), Birkmann (2006), 

and Turner et al. (2003) (Figure 2), generally seek to expand on elements of the IPCC framework by 

including a broader array of place-based contextual factors and conceptualizing the feedbacks among 

elements. They recognize that as the system changes, it may in turn have impacts on the stressors, 

which is the essence of the òcoupled socio-ecological systemó (Holling, 2001). In vulnerability mapping, 

these frameworks are primarily useful for òopening up the boxó of vulnerability and helping analysts to 

identify a broader array of factors that may affect vulnerability, and to better understand proximal and 

distal drivers of vulnerability.2 However, data and model limitations render it difficult to implement these 

frameworks, which are characterized by complex spatio-temporal dimensions and scales. In Preston et 

al.õs (2011) review of 45 vulnerability mapping studies, only 9 percent of the studies employed expanded 

frameworks. There is a sense in which the theoretical and conceptual sophistication of the framing of 

vulnerability has outrun the utility of such frameworks for assessment purposes (Levy, 2012; Preston, 

personal communication). 

  

                                                

2  According to Abson (2013, personal communication), òlack of income might be a proximal cause of food insecurity, while 
lack of education is the ultimate drivers that determines the proximal cause. More consideration of the relations between 

such distal/proximal drivers are required in climate vulnerability studies.ó 

FIGURE 2. THE EXTENDED VULNERA BILITY FRAMEWORK  

 
Source: Turner et al., 2003 
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The United Kingdomõs 

Department for 

International 

Development (DFID) 

sustainable livelihood 

framework (Carney, 

1998a and b) has been 

employed in some 

vulnerability mapping 

efforts in least developed 

countries (Figure 3). The 

framework described 

five capitals deployed by 

natural-resource 

dependent households: 

natural capital (e.g., 

assets such as water, 

soil, timber, and non-

timber forest products), 

social capital (e.g., 

interpersonal networks, 

membership in groups, 

and access to wider 

institutions of society), 

human capital (e.g., formal and informal education, local ecological knowledge, the ability to work, and 

good health), physical capital (e.g., land, tools, oxen, roads, and markets), and financial capital (e.g., cash 

savings, supplies of credit, and regular remittances and pensions) (de Sherbinin et al., 2008). At coarse 

scales, these capitals are not easy to map; at local scales, it may be possible to map them using 

participatory techniques. However, some mapping efforts (e.g., Warner et al., 2009, below) have broadly 

used livelihood security, sometimes in combination with ecosystem services (Reid et al., 2005), as an 

analytical framework for mapping livelihood assets that may be impacted by climatic changes. 

The IPCC SREX (2012) 

introduced the SREX 

framework, which 

separates out 

exposure and includes 

vulnerability as a 

separate component 

that combines the 

sensitivity and adaptive 

capacity elements of 

the IPCC framework 

(Figure 4). Vulnerability 

in this case is 

analogous to 

contextual 

vulnerability. Some 

have found that this is 

more practical in a risk 

management 

FIGURE 3. THE DFID SUSTAINABLE  LIVELIHOODS 

FRAMEWORK  

 

 

 

FIGURE 4. SREX RISK MANAGEMENT FRAMEWORK  

 
Source: IPCC, 2012 
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framework, since it more clearly separates out the climatological elements from the system being 

exposed. Risk management focuses on understanding the probability distributions of weather and 

climate events of certain magnitudes, which is vital for disaster preparedness and infrastructure 

construction, whereas vulnerability assessments tend to emphasize underlying societal vulnerabilities and 

factors that put people and infrastructure at risk. Thus, a major focus is examining the òlong tailó of 

extremes, such as floods and droughts, and their changing distributions and potential impacts on 

infrastructure or cropping systems (i.e., disaster risk). However, risk management frameworks tend to 

give second-order importance to longer-term trends in average rainfall or temperature, which can also 

have major livelihood implications. 

While the range of frameworks and interpretations of vulnerability and resilience can be bewildering, for 

spatial VA it is generally sufficient to be explicit about the framework used and the reason for choosing 

it. Whatever oneõs choice, the framework needs to be òfit for purpose,ó in terms of illuminating the 

features of interest in the complex coupled human-environment system. However, at a minimum, any 

quantitative vulnerability assessment requires definition of the system of analysis (what is vulnerable?), 

the valued attributes of concern (why is it important?), the external hazard (to what is the system 

vulnerable?), and a temporal reference (when?) (Füssel, 2007). Preston et al. (2009) also note that when 

vulnerability mappers engage with stakeholders, who may include decision-makers, the framing must 

take into account the needs and understanding of those decision-makers, an issue we return to in 

Section 4.2.  

We turn next to issues with the measurement of vulnerability.  
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3.0 MEASURING VULNERABILITY 

This section assumes some familiarity with climate vulnerability assessment in general and spatial VA in 

particular. Readers with less familiarity may wish to read the examples describing climate change impacts 

on the water sector found in Annex 2. Also, the topic of vulnerability indicators, which is closely related, 

is addressed in the USAID Africa and Latin America Resilience to Climate Change Project (ARCC) 

technical report on composite indicators (Baptista, 2013). 

There are a number of conceptual challenges in vulnerability mapping that need to be addressed before 

turning to the question of data and indicators. Hence we address those first, and then proceed to a 

more specific discussion of data sources and limitations for the òexposed elementsó (the systems, 

economic sectors, or groups that define the òwható of the VA) and the climate stressors (the external 

hazard of the VA).   

3.1 CONCEPTUAL ISSUES  

The topic of data and indicators, or òmeasurementó more broadly, is fundamental to the process of 

developing spatial indices of vulnerability. As Abson (2012: 516) states, indices have the advantage of 

reducing òthe amount and complexity of the information that must be communicated while 

simultaneously providing an indication of the interaction of multiple, spatially homogenous indicators 

through a single aggregated vulnerability ôscore.õó There is an inherent trade off, however, between the 

richness of information and the complexity of real world, and the communicability and utility of that 

information for policymaking (Abson, 2012) (Figure 5). Furthermore, because vulnerability cannot be 

measured directly,3 it involves a process of identifying òindicating variables,ó which point to the 

construct of vulnerability, and aggregating them (Hinkel, 2011). Thus for the sensitivity part of the IPCC 

framework, it is common to use indicating variables such as poverty levels and infant mortality rates 

(IMR). For factors such as coping or adaptive capacity, measures might include education, institutional 

capacity, funding levels for disaster risk reduction (DRR), or insurance coverage. Even where adequate 

data are available, these are often less-than-adequate proxies for intrinsic vulnerability. As Kasperson et 

al. (2005: 149) write, òPolitical and social marginalization, gendered relationships, and physiological 

differences are commonly identified variables influencing vulnerability, but incorporating this conceptual 

understanding in global mapping remains a challenge.ó  

                                                

3  Vulnerability has been termed an òemergent phenomena,ó in that it emerges from the stresses on the system, and 
therefore cannot easily be measured directly. Generally, a stressor, such as a major storm or flood, is said to reveal the 

underlying vulnerabilities of the coupled human-environment system. Two recent examples include the earthquake that 

struck Haiti in January 2010 and the one that struck Chile in February 2010, which was 500 times stronger (though at 

some distance from populated areas). The Haiti earthquake was far more devastating, and revealed underlying fragility in 

buildings and infrastructure, endemic poverty, and failures of governance that contributed to far higher casualties (Kurczy 

et al., 2010). 
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Differentiating between 

indicators that measure 

sensitivity (or 

susceptibility) versus 

adaptive capacity may be 

challenging (Fekete, 

2012). For example, 

illiteracy or low 

education levels could 

be measures indicating 

high sensitivity and low 

adaptive capacity. 

According to Lucas and 

Hilderink (2004), 

determinants of 

coping/adaptive capacity 

are awareness, ability, 

and action. The ability to 

cope in the face of a 

climate stressor, or to 

take action with regard 

to restoring and 

rebuilding, are heavily 

influenced by insurance markets, emergency services, and broader institutions and governance 

structures that can be difficult to measure (Chen et al., 2011). As an example, an assessment of climate 

vulnerability in southern Africa by Midgley et al. (2011) provides a comprehensive list of indicators by 

IPCC category, including 16 exposure indicators, 23 sensitivity indicators, and 12 adaptive capacity 

indicators (Annex 1). Yet the rationale for including a given indicator in the sensitivity or adaptive 

capacity categories can seem somewhat arbitrary (e.g., percent land under irrigation is a sensitivity 

indicator but could arguably be seen as an adaptive mechanism for rainfall deficits). This could be seen as 

an argument in favor of collapsing sensitivity and adaptive capacity into an overall òsocial vulnerabilityó 

term similar to the SREX framework, were it not for the fact that addressing them in policy contexts 

may imply a different set of interventions. 

Adger and Vincent (2005) and Preston et al. (2011) argue that indicators should only be selected on the 

basis of theoretical linkages, and with some understanding of the relative contributions of exposure 

versus sensitivity and adaptive capacity to overall vulnerability. The reality is, however, that the precise 

contributions are difficult to quantify. Uncertainties in underlying data layers and insufficient 

understanding regarding the relative importance of the different components and the functional form of 

relationships among them makes spatial VA challenging, especially when covering larger regions at 

coarser spatial scales, an issue we take up again in Section 5.2. While recognizing the many conceptual 

ambiguities in adequately capturing vulnerability in quantitative metrics, spatial VA is still the only 

approach available for providing some degree of spatial precision in targeting interventions and 

identifying the spatial dynamics of vulnerability. Most of its shortcomings are inherent in any effort to 

model a complex world.  

3.2 MEASURING THE  EXPOSED ELEMENTS  

In this section, we address the majority of spatial VA approaches that rely on available data, rather than 

participatory mapping approaches (Section 4.2) that generate their own data. Measurement of the 

exposed elements entails cataloging of available data, and evaluating them in terms of their conceptual 

FIGURE 5. TRADE -OFFS BETWEEN C OMMUNICABILITY  

AND I NFORMATION RICHNESS  

 
 

    Source: Abson et al., 2012, reproduced with permission 
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proximity to the component being measured, their spatial resolution, how up-to-date they are, and their 

reliability and validity. It may be possible to set up a scoring system across these axes in order to 

communicate the confidence that the developers have in each data set underlying the assessment (e.g., 

see Appendix A, Table A.6, of Yale Center for Environmental Law and Policy [YCELP] et al., 2005). At a 

minimum, it is recommended for developers of spatial VAs to provide ample metadata on each data 

layer, including an assessment of data limitations. 

We addressed some of the issues surrounding the conceptual proximity of indicators to the component 

being measured above. Two measures may purport to address the same thing, but one may be 

conceptually and methodologically closer than the other. For example, an ideal sensitivity measure might 

be household wealth as measured by material assets through a Demographic and Health Survey (DHS), 

or small area estimates of poverty on a census tract basis. These may be available for a national 

assessment, if the statistical infrastructure is fairly robust, but they are less likely to be available for an 

international assessment. So measures have been developed such as òinfrastructure povertyó (Midgley et 

al., 2011; Abson et al., 2012), which measures the population count relative to satellite observed night-

time lights, and identifies areas that are poor on the basis of lower brightness per population in a given 

area. This, however, relies on certain assumptions concerning the luminosity of an area and the degree 

to which a population is under-served by electricity, and also is subject to compounding uncertainties 

such as the spatial location of populations (census units are often too coarse) or the effects of dense 

vegetation on luminosity in relatively affluent areas. Thus, this might be termed a proxy measure of less 

validity than direct measurements of poverty or affluence. In other words, the direct measures of 

household wealth or poverty are closer in proximity to the sensitivity category than the infrastructure 

poverty measure, even if the latter may be resolved at a higher spatial resolution. 

Consideration of the spatial resolution of input variables is important for any vulnerability assessment. 

The next section will address the spatial resolution of climate indicators, which in the absence of 

downscaling can be quite coarse (grid cells on the order of 50s to 100s of km on a side). Here we focus 

on variables representing social vulnerability or other systems of interest. Figure 6 shows the relative 

input unit size for a variety of measures in a spatial VA for Mali. At left are depicted the communes 

nested in cercles (equivalent to provinces), and at right the DHS cluster centroids, which represent the 

approximate locations of surveys responses from 10 households. Data at the commune level would 

generally be considered adequate, but data at the cercle level would be too coarse to adequately identify 

spatial patterns at the subnational level. The DHS centroids tend to be denser in more populated areas, 

and hence spatial interpolations between the cluster points are more robust in those areas and less 

robust in the sparsely populated north of the country.4 Note that the data reporting units will have an 

impact on statistical properties, since the larger or more populated the unit the more averaging that 

occurs. Indicator values in smaller units will typically exhibit greater variance than in larger units (see 

Section 5.1.3 on the modifiable areal unit problem). 

                                                

4  Bayesian spatial interpolation between cluster points is recommended because it provides a spatial error map along with 
the interpolated surface. 



 

Spatial Climate Change Vulnerability Assessments: A Review of Data, Methods, and Issues             11 

Spatial layers representing cropping systems, land cover types (e.g., forests, biomes), water resources, 

fisheries, or other exposed elements tend to vary in spatial resolution depending on the data collection 

mechanism. Global land cover maps vary in resolution from 300m to 1km, based on the resolution of 

FIGURE 6. INPUT UNIT S FOR MALI SPATIAL V A:  

COMMUNES AND CERCLES  (TOP) AND DHS CLUSTERS (BOTTOM)  

 

 
Source: de Sherbinin et al., 2014 
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the satellite sensors utilized.5 Cropping system maps tend to be coarser in resolution, at closer to 5 arc-

minutes (20km) (e.g., Ramankutty et al., 2010). Livelihood systems can be even coarser, encompassing 

broad areas with common livelihood strategies.  

Regarding the òrecencyó of data, up-to-date data can be difficult to obtain in many regions, and it is not 

uncommon to find vulnerability maps with input layers that are more than 10 years old. If the situation 

on the ground has changed dramatically owing to an ensuing event (e.g., conflict, economic downturn, or 

a major disaster), then the indicators may no longer be valid. There may be little that can be done 

regarding the recency of data other than to document clearly the reference date of all the data layers in 

the metadata, and to highlight major uncertainties owing to out-of-date data in the document that 

accompanies the maps. 

The last two evaluation criteria are reliability and validity. From a statistical standpoint, reliability is the 

degree to which an instrument or assessment tool produces stable and consistent results. Validity refers 

to how well an instrument measures what it is purported to measure. Thus, a survey of poverty may be 

said to be reliable to the degree that it captures certain metrics consistently over time and space, and it 

is valid insofar as it accurately captures parameters relevant to poverty (e.g., it captures income to 

within a few cents per day or malnutrition with a modest standard error). For productive systems, some 

land cover types are easier to map than others, and most global land cover maps are derived from semi-

automated techniques (i.e., decision-tree algorithms) that require relatively little visual interpretation, 

meaning that the approach is likely to be more accurate to some regions than others.6 While land cover 

may be measured with fairly high degrees of confidence (and quantifiable uncertainty), other parameters 

may require accurate in situ data from agricultural censuses or river gauges that may be difficult to obtain 

or contain important gaps. These data collection systems are notoriously sparse in the most climate-

sensitive regions such as Africa. 

Typically it is very difficult to obtain information on the reliability and validity of many data layers; even 

when this information is available, time constraints and the multi-disciplinary nature of spatial VAs may 

make it difficult in practice to document and assess uncertainties in the underlying data fully. This is 

certainly best practice and should be encouraged; indeed, all composite vulnerability maps should ideally 

include an accompanying uncertainty map. Process-based impact model outputs typically either provide 

multiple scenarios or an accompanying uncertainty map. Even where information on the standard errors 

for data layers are absent, judgment calls need to be made concerning data sources. Developers of 

spatial VAs would do well to read through data documentation and to assess the data visually (in map 

form) and statistically to understand better spatial patterns and basic descriptive statistics such as mean, 

median, standard deviations, skewness, and outliers. For example, if administrative units with extremely 

high values are surrounded by units with very low values for the same parameter, this may point to data 

quality issues unless there is an explanation for the anomaly. Running spatial statistical tests in Geoda or 

other spatial statistics packages (Moranõs I or mapping of residuals for ordinary least squares [OLS] 

regressions) can help to identify patterns in the data that may be difficult to pick up visually. 

Whereas many spatial VAs do include future climate scenarios, they generally do not include projected 

changes in the spatial distribution of populations or other exposed elements (Preston 2012), which 

themselves have considerable uncertainties, nor do they generally factor in likely adaptation responses, 

                                                

5  New Landsat resolution (30m) land cover products will soon be available as well. 

6  For example, global land and forest cover maps have difficulty accurately capturing woody vegetation cover in the Sahel, 
which is sparsely vegetated. Much has been made of the regreening in this region, yet owing to the coarseness of their 

resolution and the algorithms used, greenness maps based on the normalized difference vegetation index (NDVI) are 

almost entirely reflecting the presence of herbaceous vegetation (Tappan, personal communication).  
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which may be hard to predict. Work by Giannini et al. (2011) and Preston (2013) represent exceptions 

to this general rule, in that they do include population and economic projections. Efforts are now 

underway to develop spatially explicit population scenarios for the shared socioeconomic pathways 

(SSPs) (Jones, 2013), but the task of anticipating likely future population distributions can be rendered 

difficult by unanticipated economic or conflict events that can alter migration patterns. Because of the 

difficulty of projecting the exposed elements, most spatial VAs extrapolate from current vulnerability to 

climate variability and extremes to identify how climate change may alter the climate component, leaving 

aside changes in the populations or sectors/systems that will be impacted. Yet, Preston (2013) notes 

that natural disaster losses have increased significantly in the United States owing more to growth in 

socioeconomic exposure than to changes in the frequency or intensity of extreme events, so ignoring 

future changes in the spatial distribution and òdensityó of exposed systems is likely to yield suboptimal 

results in a risk assessment framework.   

3.3 MEASURING THE CLIMAT E STRESSORS 

Turning to climate data, or the òexposureó aspect of vulnerability assessments, it should be stated up 

front that all vulnerability assessments ñ spatial or not ñ encounter issues with the use of climate data. 

The intent here is not to develop a comprehensive list of issues, which can be found elsewhere (e.g., 

PROVIA, 2013b), but rather to focus on the issues most commonly encountered in spatial VAs.  

Given difficulties in using climate scenario data from general circulation models (GCMs), many spatial 

VAs use past climate variability or recent histories of extreme events (e.g., flood or drought occurrence 

or economic losses associated with them) as proxies for future changes. The underlying assumption is 

that those regions that are most exposed today will likely have similar or greater levels of exposure in 

the future. Frequently used data collections that assess the frequency of extremes include the World 

Bank Hazard Hotspots collection (Dilley et al., 2005; Center for Hazards and Risks Research (CHRR) et 

al., 2005) and the United Nations Environment Programme (UNEP) Global Assessment Reports (United 

Nations Internationals Strategy for Disaster Risk Reduction [UNISDR], 2009). Both efforts faced 

significant methodological challenges to map the frequency of extremes, since flooding is generally a local 

phenomenon that is difficult to characterize globally (the UNEP report was more sound in this regard), 

and drought metrics are heavily dependent on regional definitions of rainy seasons and long-term 

historical averages of rainfall that are difficult to capture in global maps (Lyon, personal communication). 

Furthermore, data sparseness and gaps can plague efforts to map historical climate extremes. Local-level 

fine scale analyses,7 particularly in developing countries, may run into problems with obtaining adequate 

meteorological station data to adequately represent local climatology.  

Broad-scale efforts, from regional to global, generally have to rely on long-term historical climate data 

sets, all of which rely to some extent on meteorological station data networks and satellite data. This 

may be less problematic for temperature data, for which interpolation techniques are reasonably robust; 

for precipitation, these data sets may run into issues with the spatial coverage of the underlying gauge-

based data. This affects drought mapping and a range of other applications. In an eight-country study of 

climate variability, livelihoods, and migration (Warner et al., 2012a), assessment of climate reanalysis 

data for given localities compared to local rain gauge data often produced different conclusions with 

regard to variability, drought, or even trends over recent decades. Common historical data sets range in 

                                                

7  Note: Cartographers and geographers use the term òsmall-scaleó to refer to maps that cover large areas (regional to 
global) and òlarge-scaleó for maps that cover small areas (provinces/states down to localities). These scales refer to the 

number of map units to real world units, so a small scale map with a scale of 1:1,000,000 is a map in which 1cm on the map 

represents 10km on the Earthõs surface. However, this often creates confusion on the part of non-specialists. To avoid 

confusion we use the terms òbroad-scaleó for maps that cover large areas and òfine-scaleó for maps that cover small areas. 
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scale from 0.5 degrees to 2.5 degrees, or grid cells of 55km to 275km on a side at the equator (e.g., 

Climate Prediction Center Merged Analysis of Precipitation, National Centers for Environmental 

Prediction [NCEP]/National Center for Atmospheric Research [NCAR] Reanalysis, and European 

Centre for Medium-Range Weather Forecasts [ECMWF] Reanalysis). In data-poor developing regions, 

characterizing past climate accurately can be difficult owing to gaps in monitoring networks, temporal 

gaps in measurement at given stations, and discrepancies between satellite measurement and gauges 

(Dinku et al., 2011).  

Those that do use climate model outputs run into a number of issues that are common to any 

assessment that seeks to incorporate information about likely future climate. A fundamental challenge 

for vulnerability mapping that relies on accurate prediction of extremes, such as that for disaster 

response or humanitarian needs, is the limited ability of GCMs to capture historical variance or future 

extremes (IPCC, 2012; Brown and Wilby, 2012). For example, in a comparison of observed and GCM-

based downscaled annual streamflow estimates for the northeastern United States, Brown and Wilby 

found that òdownscaled GCMs underestimate both the standard deviation and [temporal] autocorre-

lation when compared with observationsó (2012: 401). The use of multi-model ensembles only tends to 

reduce variance further, since they average multiple model runs together, resulting in a dampening of the 

extremes.  

Coarseness of the model outputs, ranging in resolution from 1 to 2 degree grid cells (110ð220km on a 

side at the equator), is also a concern. Because of their inability to accurately represent some local-scale 

climate phenomena (e.g., orographic precipitation), downscaled climate information is increasingly being 

used for climate vulnerability assessments. For those studies that do use regional models, a significant 

issue is variability across model runs. For example, in a study of regional models as inputs to crop 

modeling in Africa, Oettli et al. (2011: 1) find that òthe performances of regional models in reproducing 

the most crucial variables for crop production are extremely variable.ó The result is that there is a large 

dispersion in crop yield prediction due to the different physics in each regional model and also the 

choice of parameterizations. Oettli et al. note that two configurations of the same regional model are 

sometimes more distinct than those of different regional models. 

While climate model downscaling may be an option for well-resourced spatial VAs, most do not have 

the resources to do so. Only a handful of the studies reviewed here used downscaled climate models. 

Fortunately, a new generation of higher resolution GCMs with outputs in the range of 20km2 is being 

produced for the IPCC Fifth Assessment report (e.g., Kitoh, 2012). An issue with these models, 

however, is the sheer volume of data that is generated, considering that GCM time steps are generally 

every 30 minutes. Given the volumes of data, users will need to rely on pre-calculated parameters of 

variability, since desktop computers are unlikely to be able to handle the processing. The complexity of 

formats and outputs can also overwhelm the non-climate scientists who often conduct spatial VAs. 

Another common issue is that the broad changes in temperature and precipitation are used as proxies 

for climate variables that are most relevant for the system under consideration. For agricultural systems, 

water management, or natural hazard prediction, the most important variables would be anticipated 

change in rainy season onset, gaps in rainfall during growing seasons, changes in drought periodicity, or 

changes in rainfall duration and intensity. Many of these changes are already occurring (IPCC, 2012; 

Warner et al., 2012a; Warner et al., 2012b). Yet these parameters require significant additional 

processing to extract from either historical climate data or climate model outputs. Finally, most climate 

models do not take into account the possibility for abrupt change or tipping points in the climate system 

(e.g., Duarte et al., 2012). The primary way to address this in spatial VA is to develop scenarios of future 

extreme events, or a òstress testó approach (Storch et al., 2011; Brown and Wilby, 2012).    

It is worth noting that even something as òsimpleó as mapping vulnerability to sea level rise (SLR) can 

hold uncertainties. SLR impacts in theory are easy to model, since the impacts are constrained to low 

elevation coastal zones and can be approximated with a digital elevation model (DEM), and exposure is 
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simple to assess: you are either in or outside the area at risk. Several reports and articles have assessed 

global SLR impacts on coastal populations and assets (e.g., de Sherbinin et al., 2012; McGranahan et al., 

2007; Dasgupta et al., 2007; Nicholls et al., 1999), and Klein (2012) found 13 articles covering the Nile 

Delta alone. Yet, here again, there are significant uncertainties. Most mapping efforts rely on maps of 

current mean sea level and elevation as defined by the Shuttle Radar Topography Mission (SRTM), one 

of two high-resolution globally available DEMs, which has a vertical accuracy in low slope areas of only 

+/- 4ð5m (Gorokhovich and Voustianiouk, 2006). This means that areas that are mapped at 0 m, or 

current sea level, could in fact be -5 m (submerged) or +5 m (well out of harmõs way for years to come). 

Furthermore, the time by which a given sea level will be attained is not known with great certainty 

(Rahmstorf, 2012; Pfeffer et al., 2008), SLR will vary regionally, and SLR will be complicated by tides and 

storm surge in certain locations (Strauss et al., 2012; Tebaldi et al., 2012). The best approach for local 

assessment is to rely on lidar, Geographic Positioning System (GPS), or high-resolution stereoscopic 

imagery for elevation data, and to develop local models for storm surge. 

Taken together, the data challenges translate into higher levels of uncertainty. While the list of data 

problems may seem like an insurmountable challenge to spatial VAs, it should be underscored that any 

effort to characterize an uncertain future will face challenges; yet for decision making related to climate 

adaptation, there are few alternatives to making do with the best available data. A key issue is 

uncertainty and risk communication, which is addressed further in Section 5.3. Here it is worth noting 

that the power of maps to summarize information is partially offset by their ability to hide uncertainties, 

and that developers of climate vulnerability or hotspot maps need to think about how to communicate 

those uncertainties and increase the level of transparency regarding likely sources of error both in the 

reports that accompany the maps and (to the extent possible) in the maps themselves.  
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4.0 METHODOLOGIES FOR 

SPATIAL VULNERABILITY 

ASSESSMENTS 

This section reviews four broad types of spatial vulnerability mapping by providing examples and 

assessing the appropriateness of each type to different kinds of applications. The first is the production 

of spatial vulnerability indices, where components of vulnerability are normalized as indicators and 

aggregated to create a spatial index. The architecture often is guided by a vulnerability framework such 

as the IPCCõs exposure, sensitivity, and adaptive capacity, with indicators that are more or less closely 

related to these three components. The second approach is community-based and stakeholder-driven 

vulnerability mapping, which typically takes place in local jurisdictions over fairly small areas. 

Community-based mapping is in the tradition of participatory rural appraisal (PRA) and its variants, while 

the stakeholder-driven VA generally engages local authorities though it may include community 

members. The third approach, impact mapping, while technically not part of the òVA family,ó is 

commonly used for climate risk assessment; because it is part of the broader toolkit for assessing 

climate impacts spatially, we include it for completeness. The approach involves either the direct use of 

climate data or the integration of climate scenario data into process-based crop or hydrological models 

to generate maps of likely areas of high climate impacts.  

None of the methods are necessarily superior to the others, nor are they mutually exclusive (e.g., one 

could have a participatory VA involving vulnerability indices), but the choice of method will depend on 

objectives, data availability, funding, and the time frame for the assessment. Spatial vulnerability indices 

are the most widely used, so we begin with these and give them slightly more treatment than the other 

methods. Examples in this section are meant to be illustrative rather than comprehensive; the literature 

in this area is large and growing rapidly, so it is difficult to be exhaustive. 

4.1 SPATIAL VULNERABILIT Y INDICES  

Spatial vulnerability indices combine multiple data layers (or indicators) representing different aspects of 

vulnerability in such a way that vulnerability òhotspotsó as well as areas of relatively lower vulnerability 

emerge from the integration of the layers. Here we review four approaches to aggregating or 

summarizing the information contained in the indicators in an overall index (the averaging/additive 

approach, principal components analysis, cluster analysis, and ògeonsó) providing examples of mapping 

efforts that have used each method. We address in Section 5.1 some issues related to the bounding box, 

scale, resolution, and units of analysis that need to be addressed in any of these four approaches. A 

broader literature addresses some of the methods and pros and cons of aggregate indicators (e.g., 

Organization for Economic Cooperation and Development [OECD], 2006; Barnett et al., 2008; Klein, 

2009; Hinkel, 2011; Baptista, 2013), which owing to space constraints we cannot address here. 
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4.1.1 Averaging and Additive Approaches 

In the averaging or additive approach, a first step is normalization of the indicators. Owing to problems 

of incommensurability in measurement units of the raw data, the values for each layer need to be 

normalized (or transformed) to a consistent ordinal or unit-less scale (e.g., drought frequency or 

poverty levels on a scale from 0ð10, from lowest to highest). As discussed in Section 2.0, the rescaled 

indicator layers are then averaged or added together to come up with a vulnerability score. The IPCC 

definition of vulnerability is the most frequently used framework, and one advantage of this approach is 

that separate maps for each vulnerability component (e.g., into exposure, sensitivity and adaptive 

capacity) can help decision-makers to analyze adaptation options.  

While the additive/averaging approach has a number of 

advantages, including a relatively high degree of 

transparency in its methods, there are a few challenges 

that need to be addressed. One challenge concerns how 

to weight the indicators, since the weighting will ultimately 

affect the visualization and interpretation of results. Most 

often, one finds that authors either weight factors equally 

or justify weights based on a number of criteria such as 

those discussed at the beginning of Section 3.2. Sensitivity 

analysis can assess the degree to which results are 

sensitive to the weightings applied. Other issues include 

issues of trade-offs and the functional form of the 

relationship among indicators. The issue of trade-offs 

addresses the underlying assumption that a strong score 

on one indicator can be seen to compensate for a low 

score on another, suggesting that they are perfect 

substitutes (Hinkel, 2011). For example, the same grid cell 

or census unit may have high average income and a high 

proportion of the population over the age 65. The former 

would theoretically be associated with low vulnerability 

and the latter with higher vulnerability. By averaging them 

together, one loses information that may be of value for 

adaptation planning (Fekete, 2012). The issue of functional 

form is related, and reflects the fact that most often in 

additive/averaging approaches, the indicators are added in 

a way that assumes a linear relationship among indicators, whereas the relationship could be log linear, 

curvilinear, parabolic, or exhibit strong thresholds. These issues are dealt with in more detail in Section 

5.2. 

A good example of this approach is the one developed for Southern Africa by Midgley et al. (2011) and 

Davies and Midgley (2010). They combine 16 exposure indicators (eight representing historical climate 

exposure and eight representing future exposure), 23 sensitivity indicators, and 12 adaptive capacity 

indicators into an overall vulnerability map (Figure 7). They apply differential weights (multipliers) ranging 

from 1 to 3 based on the degree to which the variable was felt to approximate the relevant IPCC term 

of interest and data quality considerations (Annex 1). They add all the indicators together (multiplying 

some of the indicators by a value of 1ð3 depending on weight), and then rescale the final aggregation to 

produce the final map.   

FIGURE 7. VULNERABIL ITY 

MAP FOR SOUTHERN AFRICA  

 
Sources: Davies and Midgley, 2010; 

Midgley et al., 2011 
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4.1.2 Principal Components Analysis 

The second common approach is principal components analysis (PCA) and the allied method, factor 

analysis.8 In this approach, the indicators are not grouped a priori into components of vulnerability, but 

rather the statistical relationships among the indicators are used to group them according to similarity in 

their spatial distributions. The idea is to break the n-dimensional (where n = the number of indicators) 

cloud of relationships among the indicators into a smaller set of uncorrelated principal components 

(PCs) that are linear combinations of the input variables. Because the PCs are uncorrelated, the scores 

associated with each PC encapsulate a unique aspect of the overall socio-ecological vulnerability 

represented by the original set of vulnerability indicators (Abson et al., 2012). 

The number of PCs is equal to the number of variables, but each successive PC explains less of the 

overall total variation, thus the main information can usually be meaningfully captured by a few leading 

PCs. The developer needs to decide how many PCs to retain; a common method of component 

selection, the Keiser criterion, suggests keeping all components with an eigenvalue (which is output with 

other PCA statistics in common statistical packages) higher than 1. Each PC is interpreted as a z-score, 

though the directionality (whether positive z-scores represent high or low vulnerability) needs to be 

tested against the underlying data.  

One advantage of the PCA is that it can help to illuminate the statistical relationships among the 

indicators used for a spatial VA. Each PC captures spatial covariance or correlation among the indicators 

and different PCs reflect uncorrelated patterns. The indicators with the highest loadings for a given PC 

can be functionally grouped to describe that component. This allows the developer to identify where 

different aspects of vulnerability are most intensely present. While the IPCC approach does allow 

development of component sub-indices, it does it on the basis of the theoretical rather than on 

statistical relationships among the indicators. Thus, a PCA approach can be complementary to the 

additive/averaging approach, providing additional information to policy makers. That said, there can be 

challenges in explaining the concept of principal components to stakeholders without much background 

in statistics.  

One of the first vulnerability indices to use this family of methods was the Social Vulnerability Index 

(SoVI) developed by Cutter et al. (2003) to measure the social component of vulnerability in the 

absence of climate and other biophysical hazards. They selected a subset of 42 variables among those 

collected by the U.S. Census Bureau and other government agencies that have been found to be highly 

predictive of vulnerability, and used those in a factor analysis to reduce the dimensions of vulnerability 

to 11 factors which are then averaged to produce an overall SoVI (Figure 8, top). Social and socio-

economic vulnerability indices identified through PCA have been used in a number of contexts around 

the world. Examples include the social susceptibility index (SSI) for German counties (Fekete, 2010) 

(Figure 8, bottom), an elderly social vulnerability index for Jamaica (Crooks, 2009), and a socio-

economic vulnerability index for a climate change and health assessment of Brazilian states (Confalonieri 

et al., 2009).  

                                                

8  PCA is used to find optimal ways of combining variables into a small number of subsets, while factor analysis may be used 
to identify the structure underlying such variables and to estimate scores to measure latent factors. These approaches are 

particularly useful in situations where the dimensionality of data and its structural composition are not well known 

(University of Wisconsin, undated). 
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Abson et al. (2012) argue that the 

standard practice of averaging or 

summing indicator scores hides 

important information regarding 

the relations between the original 

variables. They created 

vulnerability maps for southern 

Africa based on PCA and 

compared them to the ones 

generated using the averaging 

approach. Although the patterns 

are broadly similar, they find that 

the averaging approach reflected 

patterns found in the individual 

PCs, but the òtrade-offsó between 

different components of 

vulnerability reduced the 

extremes. While PCA has many 

strengths, since the components 

are statistically derived rather than 

being based on theoretical 

considerations, this study reveals 

that it may be challenging to 

attribute an intuitive meaning to a 

specific PC (see also Fekete, 2012 

for a discussion of this point). For 

example, their first PC, which they 

term òpoverty and health 

vulnerability,ó is dominated by 

infant mortality, poverty, 

agricultural constraints, and 

malnutrition. Their third PC, 

termed òinfrastructure poverty 

and population pressure 

vulnerability,ó combines the 

following indicators with high 

loadings: population per net 

primary productivity, 

infrastructure poverty (a measure 

of population divided by night time 

lights), and travel time to major 

cities. It is hard to make sense of 

this except perhaps as a proxy for spatial isolation and population density.  

de Sherbinin et al. (2014) developed vulnerability maps for Mali using a number of data layers (Table 1), 

and aggregated them using both an averaging approach and PCA. For the averaging approach, each 

indicator was normalized to a 0ð100 score, and these were averaged first into components (we doubled 

the weights for four sensitivity indicators: child stunting, household wealth, infant mortality rate, and 

poverty index by commune), and then the components were averaged to produce an overall 

vulnerability index. The overall vulnerability maps are quite similar (Figure 9), but the individual IPCC 

component and PC maps reveal different patterns (Figure 10). On the top row of Figure 10, for 

FIGURE 8. SOVI PER COUNTY, USA  (TOP), AND 

SOCIAL SUSCEPTIBILIT Y INDEX PER COUNTY , 

GERMANY (BOT TOM)  

 
Sources: Hazards and Vulnerability Institute, 2013 (top); Fekete, 2010: 

61 (bottom) 
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exposure (left) the south to north gradient of temperature and precipitation (total and interannual 

variation) is clearly evident. Sensitivity is more varied, showing pockets of high sensitivity in the northern 

and northwestern areas of the country and in southeastern Mali (owing in part to high infant mortality 

rates) and less sensitivity around Bamako (the capital) and in the west and the east. Adaptive capacity 

declines with distance from Bamako and other urban centers, as well as from the Niger River. For the 

PCs (bottom row), PC1 largely comprises climate indicators and those that are strongly influenced by 

climate, such as malaria and soil organic carbon, so it looks quite similar to the exposure component on 

the row above. PC2 combines (in the order of their loadings) maternal education, household wealth, 

health infrastructure, and the poverty index; hence it can be straightforwardly interpreted as a measure 

of household social vulnerability. PC3 includes two indicators with positive loadings, child stunting and 

household wealth; and two with negative loadings, the decadal component of precipitation and malaria 

stability. This component overwhelmingly is driven by child stunting and hence could be seen as a stand-

in for child wellbeing and malnutrition. Overall, the two approaches bring out different information that 

is complementary and may help to understand spatial patterns of vulnerability that can be useful for 

targeting interventions. 

TABLE 1. INDICATORS UTILIZED BY COMPONENT OF VULNERA BILITY  

Component  Indicator Code  Data Layer  

Exposure PRCP Average annual precipitation 

IACV Inter-annual coefficient of variation in precipitation 

DCVAR Percentage of precipitation variance explained by decadal component 

NDVICV Coefficient of variation of normalized difference vegetation index 

(NDVI) (1981ð2006) 

TTREND Long-term trend in temperature in Jul.-Aug.-Sept. (1950ð2009) 

FLOOD Flood frequency 

Sensitivity HHWL Household wealth 

STNT Child stunting 

IMR Infant mortality rate 

POVI Poverty index by commune 

CONF Conflict data for political violence  

CARB Soil organic carbon or soil quality  

MALA Malaria stability index 

Adaptive 

Capacity 

EDMO Education level of mother 

MARK Market accessibility (travel time to major cities) 

HEALTH Access to community health centers 

ANTH Anthropogenic biomes 

IRRI Irrigated areas (area equipped for irrigation) 

In summary, comparing spatial index approaches to PCA, the PCA appears to be a useful exploratory 

tool as it permits the developer to uncover spatial relationships between different components of 

vulnerability and to avoid biasing the results of a purely additive approach by the use of too many 

components that share the same spatial patterns. It can also provide additional insight into the 

vulnerability patterns and components. However, individual PCs, especially of higher order, are often 

not easy to interpret. Moreover, Midgley (personal communication) argues in favor of the additive 

approach on a conceptual basis, in the sense that each indicator may contribute separately to overall 

vulnerability. For example, while child malnutrition and poverty levels may co-vary across space, and 

hence be collapsed into one PC, that does not mean that they donõt contribute separately to the ability 

of people to cope with stressors. 
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FIGURE 9. MALI VULNE RABILITY MAPS: AVERA GE OF IPCC COMPONENT S (LEFT) 

AND OF FIRST FOUR  PCS (RIGHT)  

   

FIGURE 10. COMPONENT S OF VULNERABILITY: EXPOSURE, SENSITIVIT Y, 

ADAPTIVE CAPACITY (T OP ROW) AND PC1, PC2 , AND PC3 (BOTTOM RO W)  
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4.1.3 Cluster Analysis 

The third approach to aggregation is cluster analysis. In cluster analysis, the number of desired clusters is 

identified a priori and units are assigned to clusters on the basis of their profiles across all indicators. 

Thus, one cluster of units might have high poverty, low access to markets and health infrastructure, and 

high vulnerability to droughts, whereas another cluster might show the inverse. The resulting map will 

show patches of pixels with similar statistical profiles across the entire suite of indicators. As with PCA, 

some degree of interpretation is required to label the clusters (e.g., Kok et al., 2010).  

4.1.4 Geons 

A new approach to aggregation and regionalization is based on what are called ògeonsó (Lang et al. 

2008). Kienberger et al. (2009) and subsequently Kienberger (2012), Hagenlocher et al. (2013), and 

Kienberger et al. (2013a) have applied the concept of geons, which is an aggregation method for 

modeling spatial units where similar (homogeneous) conditions apply with respect to a set of previously 

defined sub-indicators as well as spatial heterogeneity. Using object-based image analysis processing 

software and approaches (Blaschke, 2010), the geon approach takes information on the statistical 

properties but also the location of units/cells in constructing geons (or objects). Thus, building out from 

a core grouping, the object-based approach will preferentially assign neighboring cells to that geon if 

their statistical and spatial properties are broadly similar, thus avoiding the òspecklingó effect common in 

many cell-based image processing and statistical approaches. Geons are also independent of any given 

set of defined boundaries, as for example administrative boundaries, which are commonly used as 

reference units in the construction of composite indicators. In hotspots mapping, data can also be 

provided on the proportional contribution of different components or indicators to the hotspots 

identified (e.g., see example for a cumulative climate change index in Figure 11). While this approach has 

many strengths, it has yet to be widely adopted, perhaps because of the requirements for special 

software (e.g., eCognition) and data processing and analysis skills. 

FIGURE 11. CUMULATIVE CLIMATE C HANGE INDEX IN  WEST AFRICA   

(BASED ON THE AGGREG ATION OF A SET OF FO UR CLIMATE -/HAZARD -RELATED 

SUB-INDICATORS, TEMPERAT URE, PRECIPITATION, DROUGHT, AND FLOODING)  

 
           Source: Hagenlocher et al. 2012, reprinted with permission 






































































